首页 > 论文 > 中国激光 > 42卷 > 9期(pp:902002--1)

用于795 nm压缩光源的单频激光系统的优化设计

Optimal Design of Single-Frequency Laser System for 795 nm Squeezed Light Source

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用自制的795 nm 连续单频可调谐钛宝石激光器抽运周期极化磷酸氧钛钾(PPKTP)晶体,通过外腔谐振倍频技术获得了功率为103 mW,倍频转换效率为39.6%、光束质量因子M2<1.43 的397.5 nm 紫光输出;与角度匹配的三硼酸铋(BIBO)晶体内腔倍频情况相比,紫光与光学参量放大器(OPA)的模式匹配效率由76%提高到了99%以上。同时,在平衡零拍探测系统中,通过在本底光光路中插入与OPA 腔型相同的模式清洁器,使得本底光与信号光的空间模式完全相同,从而将两束光的干涉效率提高到了99%以上,提高了平衡零拍系统的探测效率。通过对自制的795 nm 和397.5 nm 单频激光系统的优化设计,使该光源满足了小型化795 nm 连续变量压缩源样机研制的要求。

Abstract

By using an extra-cavity-enhanced frequency doubler with a periodically poled KTiOPO4 (PPKTP) crystal, which is pumped by a home-made continuous-wave single-frequency tunable Ti: sapphire laser at 795 nm wavelength, the 397.5 nm violet laser is obtained experimentally with the output power of 103 mW, conversion efficiency of 39.6%, and the beam quality factor M2<1.43. Compared with the intracavity enhanced frequency doubling with the angle matched Bismuth Triborate (BIBO) crystal, the mode matching efficiency of the 397.5 nm lasing to the optical parametric amplifier (OPA) cavity is increased from 76% up to 99%. Meanwhile, in the balanced homodyne detection system, a mode cleaner with the same cavity parameters as OPA, is inserted into the local oscillator to make sure the local oscillator and the signal fields have the identical spatial modes. As a result, the interference efficiency of the two input fields is more than 99%, and the efficiency of the balanced homodyne detection system is improved. By optimizing the design of the 795 nm and 397.5 nm laser system, the laser source can meet the requirement of studying the compact continuous-variable squeezed light source at 795 nm.

广告组5 - 光束分析仪
补充资料

中图分类号:TN241

DOI:10.3788/cjl201542.0902002

所属栏目:激光物理

基金项目:国家自然科学基金(61227015)、山西省基础研究项目(2015021022)

收稿日期:2015-01-26

修改稿日期:2015-04-24

网络出版日期:--

作者单位    点击查看

李志秀:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
杨文海:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
王雅君:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
郑耀辉:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006

联系人作者:李志秀(lizhixiu1083@163.com)

备注:李志秀(1989—),女,硕士研究生,主要从事光量子器件与全固态激光技术方面的研究。

【1】T Eberle, S Steinlechner, J Bauchrowitz, et al.. Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection[J]. Phys Rev Lett, 2010, 104(25): 251102.

【2】F Wolfgramm, A Cerè, F A Beduini, et al.. Squeezed-light optical magnetometry[J]. Phys Rev Lett, 2010, 105(5): 053601.

【3】Peng Kunchi. Generation and application of squeezed state light sub-shot-noise-limit optical measurenent and quantum information [J]. Physics, 2001, 30(5): 300-305.
彭堃墀. 光场压缩态的产生及其在亚散粒噪声光学测量和量子信息中的应用[J]. 物理, 2001, 30(5): 300-305.

【4】W P Bowen, R Schnabel, P K Lam, et al.. Experimental investigation of criteria for continuous variable entanglement[J]. Phys Rev Lett, 2003, 90(4): 043601.

【5】S Polzik, J Carri, H J Kimble. Spectroscopy with squeezed light[J]. Phys Rev Lett, 1992, 68(20): 3020-3023.

【6】M D Levenson, R M Shelby, M Reid, et al.. Quantum nondemolition detection of optical quadrature amplitudes[J]. Phys Rev Lett, 1986, 57(20): 2473-2476.

【7】Xiaojun Jia, Xiaolong Su, Kunchi Peng, et al.. Experimental demonstration of unconditional entanglement swapping for continuous Variables[J]. Phys Rev Lett, 2004, 93(25): 250503.

【8】D Bouwmeester, J W Pan, K Mattle, et al.. Experimental quantum teleportation[J]. Nature, 1997, 390(11): 575-579.

【9】A Barenco, A K Ekert. Dense coding based on quantum entanglement[J]. J Mod Opt, 1995, 42(6):1253-1259.

【10】Su Xiaolong. Generation of Quadripartite Entangled Optical Field and Quantum Key Distribution with Continuous Variables[D]. Taiyuan: Shanxi University, 2007: 81-106.
苏晓龙. 连续变量四组份纠缠光场产生和量子保密通信研究[D]. 太原: 山西大学, 2007: 81-106.

【11】Daisuke Akamatsu, Keiichirou Akiba, Mikio Kozuma. Electromagnetically induced transparency with squeezed vacuum[J]. Phys Rev Lett, 2004, 92(20): 203602.

【12】Kazuhito Honda, Daisuke Akamatsu, Manabu Arikawa, et al.. Storage and retrieval of a squeezed vacuum[J]. Phys Rev Lett, 2008, 100(9): 093601.

【13】A Dantan, M Pinard. Quantum-state transfer between fields and atoms in electromagnetically induced transparency[J]. Phys Rev A, 2004, 69(4): 043810.

【14】A Pr edojevic′ , Z Zhai, J M Caballero, et al.. Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator [J]. Phys Rev A, 2008, 78(6): 063820.

【15】G Hétet, O Glckl, K A Pilypas, et al.. Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line[J]. J Phys B: At Mol Opt Phys, 2007, 40(1): 221-226.

【16】Takahito Tanimura, Daisuke Akamatsu, Yoshihiko Yokoi. Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4[J]. Opt Lett, 2006, 31(15): 2344-2346.

【17】Yang Wenhai, Wang Yajun, Li Zhixiu, et al.. Compact and low-noise intracavity frequency-doubled single-frequency Nd∶YAP/KTP laser[J]. Chinese J Lasers, 2014, 41(5): 0502002.
杨文海, 王雅君, 李志秀, 等. 小型化、低噪声内腔倍频Nd∶YAP/KTP单频激光器[J]. 中国激光, 2014, 41(5): 0502002.

【18】Coherent. MBR Ring Series[OL]. http://www.coherent.com/Products/index.cfm 846/MBR-Ring-Series. [2015-05-13]

【19】Spectra Physics Matisse 2[OL]. http://www.spectra-physics.com/products/tunable-lasers/matisse/. [2015-05-13]

【20】M Squared. Solstis CW Ti Sapphire Laser[OL]. http://www.m2lasers.com/products/laser-systems/ti-sapphire-laser.aspx. [2015-05-13]

【21】Huadong Lu, Xuejun Sun, Meihong Wang, et al.. Single frequency Ti: sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss[J]. Opt Express, 2014, 22(20): 024554.

【22】Lu Huadong, Su Jing, Li Fengqin, et al.. Compact, stable, tunable Ti: sapphire laser[J]. Chinese J Lasers, 2010, 37(5): 1166-1171.
卢华东, 苏静, 李凤琴, 等. 紧凑稳定的可调谐钛宝石激光器[J]. 中国激光, 2010, 37(5): 1166-1171.

【23】Lu Huadong. Intracavity losses measurement of the Ti: sapphire laser with relaxation resonant oscillation frequency and output power [J]. Chinese J Lasers, 2013, 40(4): 0402002.
卢华东. 利用弛豫振荡频率和输出功率测量单频钛宝石激光器的腔内损耗[J]. 中国激光, 2013, 40(4): 0402002.

【24】Jacek K Tyminski. Photorefractive damage in KTP used as second-harmonic generator[J]. J Appl Phys, 1991, 70(10): 5570-5576.

【25】Li Hong, Feng Jinxia, Wan Zhenju, et al.. Low noise continuous–wave single frequency 780 nm laser high-efficiently generated by extra-cavity-enhanced frequency doubling[J]. Chinese J Lasers, 2014, 41(5): 0502003.
李宏, 冯晋霞, 万振菊, 等. 高效率外腔倍频产生低噪声连续单频780 nm 激光[J]. 中国激光, 2014, 41(5): 0502003.

【26】Li Jiahua, Zheng Haiyan, Zhang Ling, et al.. 397.5 nm laser produced by resonant frequency-doubling with PPKTP crystal[J]. Acta Sinica Quantum Optica, 2011, 17(1): 30-33.
李嘉华, 郑海燕, 张玲, 等. 利用PPKTP晶体倍频产生397.5 nm 激光的实验研究[J]. 量子光学学报, 2011, 17(1): 30-33.

【27】Han Yashuai, Wen Xin, Bai Jiandong, et al.. Generation of 130 mW of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling[J]. JOSA B, 2014, 31(8): 1942-1947.

【28】Zhang Jing, Ma Hongliang, Luo Yu, et al.. Efficient external resonant frequency doubling green laser in bulk periodically poled KTiOPO4[J]. Chinese J Lasers, 2002, 29(12): 1057-1060.
张靖, 马红亮, 罗玉, 等. 准相位匹配的KTP晶体获得高效外腔谐振倍频绿光[J]. 中国激光, 2002, 29(12): 1057-1060.

【29】P K Lam, T C Ralph, B C Buchler, et al.. Optimization and transfer of vacuum squeezing from an optical parametric pscillator[J]. J Opt B: Quantum Semiclass Opt, 1999, 1(4): 469-474.

【30】Wang Yajun, Yang Wenhai, Zheng Yaohui, et al.. Influence of pump wavelength and Nd3+ doped concentration on the performance of intracavity doubling single-frequency lasers[J]. Chinese J Lasers, 2013, 40(6): 0602005.
王雅君, 杨文海, 郑耀辉, 等. 抽运波长及Nd3 + 掺杂浓度对内腔倍频单频激光器性能的影响[J]. 中国激光, 2013, 40(6): 0602005.

【31】E D Black. An introduction to pound-drever-hall laser frequency stabilization[J]. Am J Phys, 2001, 69(1): 79-87.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF