首页 > 论文 > 光学 精密工程 > 23卷 > 8期(pp:2229-2235)

碳化硅陶瓷的超声振动辅助磨削

Ultrasonic assisted grinding for silicon carbide

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用普通磨削方式和超声振动辅助磨削方式对无压烧结SiC材料进行了磨削工艺实验, 对不同磨削方式下磨削参数对磨削力比、表面损伤及亚表面损伤的影响进行了对比研究, 并分析了超声振动磨削作用机制。实验结果显示, 该实验中SiC材料去除主要以脆性去除为主, 砂轮磨削力比随着磨削深度和进给速度的增加缓慢增加, 随着主轴转速的增加略有减小; 普通磨削时SiC工件亚表面损伤深度随着磨削深度、进给速度增加逐渐增加, 而超声振动辅助磨削变化较小。与普通磨削相比, 在相同的磨削参数下, 超声振动辅助磨削的高频冲击使材料破碎断裂情况得到改善, 且磨削力比减小近1/3, 表面裂纹、SiC晶粒脱落、剥落等表面损伤较少, 表面损伤层较浅, 亚表面裂纹数量及深度都有较大程度降低, 可以获得较为理想的表面质量。

Abstract

A grinding experiment was performed for silicon carbide (SiC) materials by Ultrasonic Assisted Grinding (UAG) and Normal Grinding (CG) methods. The effects of grinding parameters in different modes on the grinding force ratio, surface damage and sub-surface damage of the SiC materials were researched by using a dynamometer and a Scanning Electron Microscopy(SEM). Then the action mechanism of the UAG was researched. The experimental results show that brittle fracture is the main removal mode in grinding process. The grinding force ratio of the grinding wheel increases with the increases of cutting depth and feed rates slowly and decreases with the increase of pindle speed slightly. In the normal grinding, the sub-surface damage depth of a SiC workpiece increases with the increase of cutting depth and feed rates gradually, and that in the UAG has a smaller change. Under the same grinding parameters, the grinding force ratio in UAG process is reduced nearly 1/3 as compared with the results in CG process, and its surface damages, such as surface cracks, fall off of SiC grains, flaking of SiC are reduced and the thickness of surface damage layer is thinned. In addition, the density and depths of sub-surface cracks are reduced in a greater degree. It concludes that the UAG method can obtain ideal surface quality and high processing efficiency.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN305.2;TN304.24

DOI:10.3788/ope.20152308.2229

基金项目:国家973重点基础研究发展计划资助项目(No.2011CB013202); 国家自然科学基金资助项目(No.51175126)

收稿日期:2014-12-20

修改稿日期:2015-01-15

网络出版日期:--

作者单位    点击查看

刘立飞:哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001
张飞虎:哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001
刘民慧:哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001

联系人作者:刘立飞(liulf_87@163.com)

备注:刘立飞(1987-), 男, 山东聊城人, 博士研究生, 2008年于山东大学获得学士学位, 2010年于哈尔滨工业大学获得硕士学位, 主要从事硬脆材料非球面精密超精密磨削加工技术相关研究。

【1】郝寅雷,赵文兴,翁志成.新型反射镜材料——碳化硅[J]. 宇航材料工艺, 2001(4): 11-14.
HAO Y L, ZHAO W X, WENG ZH CH. New mirror material of silicon carbide[J]. Aerospace Materials & Technology, 2001(4): 11-14. (in Chinese)

【2】NI J M, LI B Z. Phase transformation in high-speed cylindrical grinding of SiC and its effects on residual stresses [J]. Materials Letters, 2012,89: 150-152.

【3】张剑寒,张宇民,韩杰才. 空间用碳化硅反射镜的设计制造与测试[J]. 光学 精密工程,2006, 14(2): 179-184.
ZHANG J H, ZHANG Y M, HAN J C, et al.. Design, fabrication and testing of space-borne SiC mirror [J]. Opt. Precision Eng., 2006, 14(2): 179-184. (in Chinese)

【4】姚旺,张宇民,韩杰才,等. 反应烧结碳化硅的磨削特性[J]. 无机材料学报,2012, 27(7): 764-768.
YAO W, ZHANG Y M, HAN J C, et al.. Grinding characteristics of reaction bonded silicon carbide [J]. Journal of Inorganic Materials ,2012, 27(7): 764-768. (in Chinese)

【5】池宪,吴凡,锁小红. C-SiC陶瓷基复合材料磨削参数优化研究[J]. 航空精密制造技术,2012, 48(1): 41-43.
CHI X, WU F, SUO X H. Research of grinding parameters about C-SiC ceramic matrix composite[J]. Aviation Precision Manufacturing Technology,2012, 48(1): 41-43. (in Chinese)

【6】AGARWAL S, RAO P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding[J]. International Journal of Machine Tools & Manufacture, 2008,48: 698-710.

【7】刘运凤,荆君涛,李占杰. 旋转超声磨削加工中刀具结合剂类型与加工性能的关系[J]. 光学 精密工程,2012, 20(9): 2021-2028.
LIU Y F, JING J T, LI ZH J. Relationship between bond patterns of tools and working performance in rotary ultrasonic grinding[J]. Opt. Precision Eng., 2012, 20(9): 2021-2028. (in Chinese)

【8】荆君涛,刘运凤,李占杰,等. 旋转超生磨削加工中影响磨具寿命的结构参数优化[J]. 光学 精密工程,2013, 21(4): 972-979.
JING J T, LIU Y F, LI ZH J, et al.. Optimization of structure parameters affecting tool life in rotary ultrasonic grinding machining[J]. Opt. Precision Eng., 2013, 21(4): 972-979. (in Chinese)

【9】JI R J, LIU Y H, ZHANG Y Z, et al.. Optimizing machining parameters of silicon carbide ceramics with ED milling and mechanical grinding combined process [J]. Int. J. Adv. Manuf. Technol., 2010,51: 195-204.

【10】GAO G F, ZHAO B, XIANG D H, et al.. Research on the surface characteristics in ultrasonic grinding nano-zirconia ceramics[J]. Journal of Materials Processing Technology, 2009,209: 32-37.

【11】YANG X B, HAN J C. Experimental study on ultrasonic vibration grinding of brittle optical materials [J]. Optical Technology, 2007,33(1): 65-67.

【12】GONG H, FANG F Z, HU X T. Kinematic view of tool life in rotary ultrasonic side milling of hard and brittle materials [J]. International Journal of Machine Tools & Manufacture, 2010,50: 303-307.

【13】GUO B, ZHAO Q L, JACKSON M J. Ultrasonic vibration assisted grinding of micro-structured surfaces on silicon carbide ceramics materials[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012: 553-559.

【14】李伯民,赵波. 现代磨削技术[M].北京: 机械工业出版社,2003.
LI B M, ZHAO B. Modern Grinding Technology[M]. Beijing: Machinery Industry Press, 2003. (in Chinese)

【15】MULT H C, SPUR G, HOLL S E. Ultrasonic assisted grinding of ceramics [J]. Journal of Materials Processing Technology, 1996,62: 287-293.

引用该论文

LIU Li-fei,ZHANG Fei-hu,LIU Min-hui. Ultrasonic assisted grinding for silicon carbide[J]. Optics and Precision Engineering, 2015, 23(8): 2229-2235

刘立飞,张飞虎,刘民慧. 碳化硅陶瓷的超声振动辅助磨削[J]. 光学 精密工程, 2015, 23(8): 2229-2235

被引情况

【1】董志刚,段佳冬,康仁科,朱祥龙,郑非非. 超声辅助磨削硬脆材料芯棒直径预测模型. 光学 精密工程, 2017, 25(8): 2106-2112

【2】李志鹏,张飞虎,孟彬彬. 反应烧结SiC陶瓷脆性去除特征及刻划力波动行为. 光学 精密工程, 2018, 26(3): 632-639

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF