光子学报, 2015, 44 (9): 0927003, 网络出版: 2015-10-22   

双模光场与级联三能级原子在非旋波近似下的量子纠缠

Quantum Entanglement of a Two-Mode Field Interacting with a Cascade Three-level Atom without Rotating Wave Approximation
作者单位
1 北京交通大学 海滨学院, 河北 黄骅 061199
2 西南科技大学 理学院, 四川 绵阳 621010
摘要
利用全量子化理论, 在非旋波近似下对双模相干态光场与级联型三能级原子相互作用的量子纠缠进行了精确求解.讨论了初始时刻原子能级的叠加和平均光子数对量子纠缠演化的影响.数值计算结果表明: 初始时刻原子处于单一能级时, 量子纠缠演化曲线的周期随着平均光子数的增加逐渐变大;初始时刻原子能级的叠加导致初始阶段纠缠度显著降低, 纠缠达到最大值的时间随着平均光子数的增大逐渐变长, 且初始时刻原子能级的叠加使得量子纠缠的周期性消失;无论初始时刻原子能级处于哪种能级的叠加态, 随着平均光子数的增大, 由虚光子效应引起的小锯齿状的振荡逐渐增强.
Abstract
The quantum entanglement of the two mode coherent field interacting with a cascade three-level atom was calculated accurately with non-rotating wave approximation by using the complete quantum theory. The influences of the superposition between different atomic energy level at the initial time and the mean photon number on quantum entanglement evolution were considered. The results obtained by the numerical method show that the period of the quantum entanglement evolution becomes longer with the increase of the mean photon number when the atom initially at the single energy level, the quantum entanglement at the first few periods is reduced notably due to the fact of the atom is initially in the superposition state, it takes longer time for the entanglement to reach the maximum value with the increase of the mean photon number, moreover, because of the atom is initially in the superposition state, the periodic disappears. No matter which atom state, the quick oscillation due to the virtual photon process increases with the increasing of the mean photon number.

丛红璐, 成爽, 刘雪华, 于娜, 任学藻. 双模光场与级联三能级原子在非旋波近似下的量子纠缠[J]. 光子学报, 2015, 44(9): 0927003. CONG Hong-lu, CHENG Shuang, LIU Xue-hua, YU Na, REN Xue-zao. Quantum Entanglement of a Two-Mode Field Interacting with a Cascade Three-level Atom without Rotating Wave Approximation[J]. ACTA PHOTONICA SINICA, 2015, 44(9): 0927003.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!