量子电子学报, 2015, 32 (5): 635, 网络出版: 2015-10-22   

Cd1-xMnxTe/CdTe抛物量子阱内激子结合能研究

Binding energies of excitons in symmetrical Cd1-xMnxTe/CdTe parabolic quantum well
作者单位
1 曲阜师范大学物理工程学院, 山东 曲阜 273165
2 中科院上海微系统与信息技术研究所信息功能材料国家重点实验室, 上海 200050
摘要
在有效质量近似下采用变分法计算了Cd1-x Mnx Te/CdTe抛物量子阱 内不同Mn组分下激子的结合能, 给出了结合能在不同Mn组分下随阱宽、垒宽、外加电场的变化情况。 结果表明:激子结合能是阱宽的一个非单调函数,随阱宽的变化呈现先增加后减小的趋势,而且随着Mn组分增大, 激子结合能达到最大值的阱宽相应变小, 这与材料的带隙改变有关;激子结合能随垒宽逐渐增大然后趋于稳定值,这与波函数向垒中的渗透有关; 在一定范围内电场对激子结合能的影响很小,而且Mn组分越大对激子结合能影响越小,但电场强度较大时 会破坏激子效应。计算结果可以为基于半导体抛物形量子阱发光器件设计制作提供一些理论依据。
Abstract
Exciton binding energies in Cd1-x Mnx Te/CdTe parabolic quantum well (PQW) with different Mn contents were calculated through variational method in the effective mass approximation. The variations of exciton binding energy as a function of well width, barrier width and electric field were calculated with different Mn compostions. The results show that the exciton binding energy is a non-monotonic function of well width. It increases first until reaching a maximum, and then decreases as the well width increases farther. In addition, with the increase of Mn content the well width should decrease to reach the maximum value of the exciton binding energy due to the change of material band gap. The exciton binding energy increases first until reaching a stable value with the increase of barrier width, which is related to the barrier penetration of wave function. The external electric field has little effect on binding energy, and the effect decreases with the increase of Mn content, but when the electric field is large enough, it will destroy the excitonic effect. The results are meaningful in design of optoelectronic device based on PQW.

张金凤, 王海龙, 龚谦. Cd1-xMnxTe/CdTe抛物量子阱内激子结合能研究[J]. 量子电子学报, 2015, 32(5): 635. ZHANG Jinfeng, WANG Hailong, GONG Qian. Binding energies of excitons in symmetrical Cd1-xMnxTe/CdTe parabolic quantum well[J]. Chinese Journal of Quantum Electronics, 2015, 32(5): 635.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!