首页 > 论文 > 中国激光 > 42卷 > 11期(pp:1106006--1)

石墨烯-硫化镉复合材料的三阶非线性光学性质

Third-Order Nonlinear Optical Properties of Graphene-CdS Composites

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过溶剂热法合成了石墨烯-硫化镉(G-CdS)复合材料。利用X 射线衍射仪、透射电子显微镜和紫外可见光谱仪对G-CdS复合材料的结构、尺寸、形貌和吸收特性等进行了表征,结果表明硫化镉量子点的平均尺寸为7 nm,且较为均匀地附着在石墨烯上。利用单光束Z-扫描技术研究了G-CdS复合材料在波长为532 nm、脉冲宽度为30 ps激光作用下的三阶非线性光学特性,结果表明G-CdS复合材料具有正的非线性折射率和饱和吸收特性,其三阶非线性极化率为4.36×10-12 esu,非线性吸收系数为-6.54×10-11 m/W。与硫化镉量子点相比三阶非线性特性有较大改善。

Abstract

Graphene- cadmium sulfide (G- CdS) composites are synthesized by a solvothermal method. The composites are characterized by X-ray diffraction, transmission electron microscopy and ultraviolet visible (UVvis) absorption on their structure, size and morphology, which demonstrate that cadmium sulfide quantum dots with an average diameter of about 7 nm attached to the graphene surface. The third-order optical nonlinearities of G-CdS composites using picosecond Z-scan technique at wavelength of 532 nm is investigated, pulse width of 30 ps. The results show that G-CdS composite has a positive nonlinear refractive index and properties of saturable absorption. The third-order nonlinear susceptibility of G-CdS composite is calculated to be 4.36×10-12 esu, nonlinear absorption coefficient to be - 6.54 × 10-11 m/W. Comparing with cadmium sulfide quantum dots, the third- order nonlinearity of composites are improved.

投稿润色
补充资料

中图分类号:O437.5

DOI:10.3788/cjl201542.1106006

所属栏目:材料与薄膜

基金项目:国家自然科学基金(61404045, U1404624)、河南省科研项目(122300410105, 144300510018)

收稿日期:2015-04-18

修改稿日期:2015-07-15

网络出版日期:--

作者单位    点击查看

王记:河南大学物理与电子学院微系统物理研究所, 河南 开封 475004
韩俊鹤:河南大学物理与电子学院微系统物理研究所, 河南 开封 475004
朱宝华:河南大学物理与电子学院微系统物理研究所, 河南 开封 475004
戴树玺:河南大学物理与电子学院微系统物理研究所, 河南 开封 475004
谭云龙:河南大学物理与电子学院微系统物理研究所, 河南 开封 475004
顾玉宗:河南大学物理与电子学院微系统物理研究所, 河南 开封 475004

联系人作者:王记(hnwj910@qq.com)

备注:王记(1988—),女,硕士研究生,主要从事非线性光学材料与器件等方面的研究。

【1】Yang Y F, Li M, Xie Y L, et al.. Fabrication CdS nanoparticles on the edges of reduced grapheme oxide sheets with P2VP polymer brushes [J]. Materials Letters, 2014, 118: 184-187.

【2】Li Shiguo, Wang Xinzhong, Zhou Zhiwen, et al.. Developing bottlenecks of quasi-zero-dimensional quantum dot lasers[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030006.
李世国, 王新中, 周志文, 等. 准零维量子点激光器的发展瓶颈[J]. 激光与光电子学进展, 2014, 51(3): 030006.

【3】He Zhicong, Li Fang. Optical properties of third-order nonlinearities of CdSeS quantum dots/polystyrene composite film[J]. Chinese J Lasers, 2013, 40(10): 1007001.
何志聪, 李芳. CdSeS量子点/聚苯乙烯薄膜的三阶非线性光学特性[J]. 中国激光, 2013, 40(10): 1007001.

【4】Zeng Feng, Zhu Xiaojun, Wang Wei, et al.. Research on background of the CdSe/ZnS quantum-dot doped fiber[J]. Laser & Optoelectronics Progress, 2014, 51(1): 010606.
曾凤, 朱晓军, 王伟, 等. CdSe/ZnS量子点光纤纤芯基底的研究[J]. 激光与光电子学进展, 2014, 51(1): 010606.

【5】Venkatram N, Rao D N, Akundi M A. Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles[J]. Optics Express, 2005, 13(3): 867-872.

【6】Lami J F, Hirlimann C. Two-photon excited room-temperature luminescence of CdS in the femtosecond regime[J]. Physical Review B, 1999, 60(7): 4763-4770.

【7】Etienne M, Biney A, Walser A D, et al.. Third-order nonlinear optical properties of a cadmium sulfide-dendrimer nanocomposite[J]. Appl Phys Lett, 2005, 87(18): 181913.

【8】Britt J, Ferekides C. Thin-film CdS/CdTe solar cell with 15.8 percent efficiency[J]. Appl Phys Lett, 1993, 62(22): 2851-2852.

【9】Chun S, Jung Y, Kim J, et al.. The analysis of CdS thin film at the processes of manufacturing CdS/CdTe solar cells[J]. Journal of Crystal Growth, 2011, 326(1): 152-156.

【10】Li Q, Gou B D, Yu J G, et al.. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated grapheme nanosheets[J]. Journal of the American Chemical Society, 2011, 133(28): 10878-10884.

【11】Sheeney-Haj-Ichia L, Basnar B, Willner I, et al.. Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes[J]. Angew Chem Int Ed, 2005, 44(1): 78-83.

【12】Hoffman A J, Mills G, Yee H, et al.. Q- sized cadmium sulfide: Synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers[J]. J Chem Phys, 1992, 96(13): 5546-5552.

【13】Entezari M H, Ghows N. Micro-emulsion under ultrasound facilitates the fast synthesis of quantum dots of CdS at low temperature[J]. Ultrasonics Sonochemistry, 2011, 18(1): 127-134.

【14】Yang Xinyu, Xiang Weidong, Zhang Xiyan, et al.. Z-scan analysis for CdS nanocrystals embedded in glass with third-order optical nonlinearities[J]. Infrared and Laser Engineering, 2010, 39(4): 694-697.
杨昕宇, 向卫东, 张希艳, 等. Z-scan分析CdS纳米晶掺杂玻璃的光学非线性[J]. 红外与激光工程, 2010, 39(4): 694-697.

【15】Lin Y, Zhang J, Kumacheva E, et al.. Third-order optical nonlinearity and figure of merit of CdS nanocrystals chemically stabilized in spin-processable polymeric films[J]. Journal of Materials Science, 2004, 39(3): 993-996.

【16】Ahmad H, Muhammad F D, Zulkifli M Z, et al.. Q-switched pulse generation from an all-fiber distributed Bragg reflector laser using graphene as saturable absorber[J]. Chin Opt Lett, 2013, 11(7): 071401.

【17】Liang Li, Lin Zhenghui, Chen Shi, et al.. Graphene passively Q-switching for dual-wavelength lasers at 1064 nm and 1342 nm in Nd∶YVO4 laser[J]. Chinese J Lasers, 2014, 41(4): 0402009.
梁莉, 林正怀, 陈狮, 等. 石墨烯实现Nd∶YVO4激光器1064 nm和1342 nm双波长被动调Q[J]. 中国激光, 2014, 41(4): 0402009.

【18】Wang K, Liu Q, Wu X Y, et al.. Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing[J]. Talanta, 2010, 82(1): 372-376.

【19】Zhou Tian, Chen Bingdi, Yao Aihua, et al.. CdS/graphene nanohybrids: Facile ultrasonic synthesis and photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(2): 231-236.
周田, 陈炳地, 姚爱华, 等. CdS/石墨烯纳米复合材料的超声化学法制备及光催化性能[J]. 无机化学学报, 2013, 29(2): 231-236.

【20】Min Shixiong, Lü Gongxuan. Preparation of CdS/graphene composites and photocatalytic hydrogen generation form water under visible light irradiation[J]. Acta Physico-Chimica Sinica, 2011, 27(9): 2178-2184.
敏世雄, 吕功煊. CdS/石墨烯复合材料的制备及其可见光催化分解水产氢性能[J]. 物理化学学报, 2011, 27(9): 2178-2184.

【21】Park C Y, Kefayat U, Vikram N, et al.. Preparation of novel CdS-graphene/TiO2 composites with high photocatalytic activity for methylene blue dye under visible light[J]. Bulletin of Materials Science, 2013, 36(5): 869-876.

【22】Feng M, Sun R Q, Zhan H B, et al.. Lossless synthesis of grapheme nanosheets decorated with tiny cadmium sulphide quantum dots with excellent nonlinear optical properties[J]. Nanotechnology, 2010, 21(7): 075601.

【23】Ouyang Q Y, Yu H L, Xu Z, et al.. Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass[J]. Appl Phys Lett, 2013, 102(3): 031912.

【24】Marcano D C, Kosynkin D V, Berlin J M, et al.. Improved synthesis of gaphene oxid[J]. ACS Nano, 2010, 4(8): 4806-4814.

【25】Cao A N, Liu Z, Chu S S, et al.. A facile one-step method to produce grapheme-CdS quantum dot nanocomposites as promising optoelectronic materials[J]. Advanced Materials, 2010, 22(1): 103-106.

【26】Sheik B M, Said A A, Wei T H, et al.. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE Journal of Quantum Electronics, 1990, 26(4): 760-769.

【27】Pan S G, Liu X H. CdS-graphene nanocomposite: Synthesis, adsorption kinetics and high photocatalytic performance under visible light irradiation[J]. New Journal of Chemistry, 2012, 9(9): 1781-1787.

【28】Zhang N, Yang M Q, Tang Z R, et al.. CdS-graphene nanocomposites as visible light photocatalyst for redox reactions in water: A green route for selective transformation and environmental remediation[J]. Journal of Catalysis, 2013, 303(7): 60-69.

【29】Zhang Y H, Tang Z R, Fu X Z, et al.. TiO2 graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2 graphene truly different from other TiO2 carbon composite materials[J]. ACS Nano, 2010, 4(12): 7303-7314.

【30】Zhang Y H, Zhang N, Tang Z R, et al.. Improving the photocatalytic performance of grapheme-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact[J]. Physical Chemistry Chemical Physics, 2012, 14(25): 9167-9175.

【31】Zhang Y, Zhang N, Tang Z R, et al.. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer[J]. ACS Nano, 2012, 6(11): 9777-9789.

【32】Zhu Baohua, Wang Fangfang, Zhang Kun, et al.. Linear and nonlinear optical properties of CdSe quantum dots[J]. Acta Physica Sinica, 2008, 57(10): 6557-6564.
朱宝华, 王芳芳, 张琨, 等. CdSe量子点的线性和非线性光学特性[J]. 物理学报, 2008, 57(10): 6557-6564.

【33】Zhao Xin, Yan Xiaoqing, Ma Qiang, et al.. Optical nonlinearities of reduced graphene oxide[J]. Acta Optica Sinica, 2013, 33(7): 0719001.
赵欣, 鄢小卿, 马强, 等. 还原氧化石墨烯光学非线性[J]. 光学学报, 2013, 33(7): 0719001.

【34】Zhang H, Stéphane V, Bao Q L, et al.. Z-scan measurement of the nonlinear index of graphene[J]. Opt Lett, 2012, 37(11): 1856-1858.

引用该论文

Wang Ji,Han Junhe,Zhu Baohua,Dai Shuxi,Tan Yunlong,Gu Yuzong. Third-Order Nonlinear Optical Properties of Graphene-CdS Composites[J]. Chinese Journal of Lasers, 2015, 42(11): 1106006

王记,韩俊鹤,朱宝华,戴树玺,谭云龙,顾玉宗. 石墨烯-硫化镉复合材料的三阶非线性光学性质[J]. 中国激光, 2015, 42(11): 1106006

被引情况

【1】武宇霞,苗艳明,杨茂青,李艳,闫桂琴. 基于Mn掺杂的ZnS量子点/CTAB纳米复合材料米托蒽醌的检测. 光学学报, 2016, 36(5): 516001--1

【2】蒋胜宝,唐斌. 异常涡旋光束在手征介质中的传输特性. 激光与光电子学进展, 2016, 53(9): 92601--1

【3】郭波,欧阳秋云,李施,方再金,王鹏飞. 基于石墨烯三元复合材料的双波长孤子激光器. 中国激光, 2017, 44(7): 703012--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF