太赫兹科学与电子信息学报, 2015, 13 (5): 696, 网络出版: 2015-11-30  

基于超材料结构的高Q 太赫兹滤波器

Metamaterial structure based high quality terahertz filter
作者单位
1 中科院苏州纳米技术与纳米仿生研究所 中科院纳米器件与应用重点实验室 纳米器件与材料研究部,江苏 苏州 215125
2 南京理工大学 材料科学与工程学院,江苏 南京 210094)
3 南京理工大学 材料科学与工程学院,江苏 南京 210094
摘要
在半导体微纳工艺基础上研究了基于镜像非对称结构超材料太赫兹(THz)滤波器的性能。通过时域有限差分理论,模拟分析了滤波器工作频率下太赫兹电场强度和电流密度在微结构的分布,并阐述了微结构太赫兹波电磁共振的机理。基于太赫兹滤波器电磁损耗机制和微纳加工工艺条件,设计并优化器件开口环结构,使相邻开口环中产生电磁场的干涉相消,减少太赫兹辐射损耗,提高品质因子Q 值。采用太赫兹时域光谱(THz-TDS)系统测试了滤波器的太赫兹透射特性,实验结果表明,在工作频率0.923 THz 下,镜像非对称结构的平面太赫兹滤波器品质因子达到12.5。同时,研究了太赫兹电场方向对滤波器性能的影响。高Q 太赫兹滤波器的研制为制备高速太赫兹电调制器等太赫兹器件提供了重要的实验依据。
Abstract
Terahertz(THz) filters with mirrored asymmetric metamaterial structure have been studied based on the micro-nanofabrication technology. According to the finite difference time domain theory, the electric field and current density distribution of the microstructure are simulated and analyzed. The mechanisms of THz electromagnetic resonance of THz filter and physical mechanism of THz radiation loss are also described. The asymmetric split ring of micro-structures is designed and optimized in order to reduce the radiation loss and improve the Q value of the quality factor. The performance of the THz filter is characterized in the THz Time Domain Spectroscopic(THz-TDS) system. It is found that the quality factor of the filters with mirrored asymmetric metamaterial reaches up to 12.5 at the frequency of 0.923 THz. At the same time, the dependence of the direction of THz electric-field E on the performance of THz filter is studied as well. The study of the THz filter provides an important experimental basis for the development of THz devices, such as electrically tunable THz modulator.

张力力, 张晓渝, 徐锋, 秦华. 基于超材料结构的高Q 太赫兹滤波器[J]. 太赫兹科学与电子信息学报, 2015, 13(5): 696. ZHANG Lili, ZHANG Xiaoyu, XU Feng, QIN Hua. Metamaterial structure based high quality terahertz filter[J]. Journal of terahertz science and electronic information technology, 2015, 13(5): 696.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!