首页 > 论文 > 中国激光 > 43卷 > 1期(pp:103007--1)

基于三维X 射线成像的激光复合焊接7020 铝合金的组织与力学特性演变

Three-Dimensional X-Ray Micro-Tomography Based Microstructure and Mechanical Performance of Hybrid Laser Welded AA7020

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于光学显微镜、扫描电镜、同步辐射X 射线成像、电子背散射衍射技术、显微硬度计、拉伸性能测试以及有限元仿真探讨了光纤激光-脉冲MIG 复合焊接2 mm 厚7020-T651铝合金的微观组织与力学特性。结果表明:焊缝、熔合线和母材分别为粗大等轴树枝晶、粗大柱状晶和典型的轧制组织,紧邻熔合线存在一个约100 μm 宽的等轴细晶区;接头的抗拉强度、屈服强度、延伸率和强度系数分别为260 MPa、213 MPa、4.8%和0.7;强化元素Zn 的蒸发烧损和再分布以及强化相颗粒变异的综合影响,导致焊缝的硬度值最低(75 HV),约为母材的62.5%,但不是导致接头应力集中的重要原因,焊趾区微小缺口才是导致接头疲劳强度降低的根本原因。

Abstract

Rolled AA7020-T651 with 2 mm thickness are welded by a hybrid laser arc heat source system with the ER5356 filler. The microstructure and mechanical performance of hybrid welded joint are investigated by optical microscope, scanning electron microscope, Shanghai synchrotron radiation X-ray micro-tomography, electron backscattered diffraction, micro-hardness, tensile properties and finite element simulation. The results show that the weld zone, fusion line and base mental exhibit cast equiaxial dendrites, large columnar crystal and stretching rolling structure, respectively. Moreover, a fine grain zone with about 100 μm in width near the heat affected zone is observed clearly. The tensile strength, yield strength, elongation and welding coefficient are 260 MPa, 213 MPa, 4.8% and 0.7, respectively. Central hybrid weld has the lowest hardness (75 HV), which is about 62.5% of base metal, presenting a serious strength loss. This is mainly due to serious evaporation losses and redistribution of strengthening element Zn as well as the precipitate particles modifications during the hybrid welding process. Finite element analysis suggests that the undercut similar to a notch near weld toe rather than central weld zone with the lowest hardness is the fundamental reason to the fatigue failure of in-service hybrid welded joints.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG47;U271

DOI:10.3788/cjl201643.0103007

所属栏目:激光制造

基金项目:国家自然科学基金(11572267)、牵引动力国家重点试验室开放基金(2015TPL_T07,TPL1505)

收稿日期:2015-08-24

修改稿日期:2015-10-01

网络出版日期:--

作者单位    点击查看

胡雅楠:西南交通大学牵引动力国家重点实验室, 四川 成都 610031
吴圣川:西南交通大学牵引动力国家重点实验室, 四川 成都 610031
张思齐:西南交通大学牵引动力国家重点实验室, 四川 成都 610031
焦汇胜:上海交通大学材料科学与工程学院, 上海 200240
付亚楠:中国科学院上海应用物理研究所上海光源, 上海 201204

联系人作者:胡雅楠(huyanan0121@sina.com)

备注:胡雅楠(1991—),女,硕士研究生,主要从事结构强度方面的研究。

【1】Peng Xiaoyan, Cao Xiaowu, Duan Yulu, et al.. Microstructures and properties of MIG welded joint of 7020 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(4): 912-918.
彭小燕, 曹晓武, 段雨露, 等. 7020铝合金MIG 焊焊接接头的组织与性能[J]. 中国有色金属学报, 2014, 24(4): 912-918.

【2】Zhang Guowei, Xiao Rongshi. Microstructure and mechanical properties of 5083 aluminum alloy joint of heavy section by ultra-narrow gap giber laser beam welding[J]. Chinese J Lasers, 2014, 41(9): 0903006.
张国伟, 肖荣诗. 5083铝合金厚板超窄间隙光纤激光焊接接头组织与性能[J]. 中国激光, 2014, 41(9): 0903006.

【3】Ma T, Ouden Q D. Softening behaviour of Al-Zn-Mg alloys due to welding[J]. Materials Science and Engineering A, 1999, 266(1/2): 198- 204.

【4】Olaf E. Welded Structures of the Railway Vehicles, Railway Technology International[M]. New York: Pergamon Press, 1992.

【5】Gur C H, Yildz I. Nondestructive investigation on the effect of precipitation hardening on impact toughness of 7020 Al-Zn-Mg alloy[J]. Materials Science and Engineering A, 2004, 382(1): 395-400.

【6】Cam G, Kocak M. Microstructural and mechanical characterization of electron beam welded Al alloy 7020[J]. Journal of Materials Science, 2007, 42(17): 7154-7161.

【7】Heidarzadeh A, Barenji R V, Esmaily M, et al.. Tensile properties of friction stir welds of AA7020 aluminum alloy[J]. Transactions of the Indian Institute of Metals, 2015, 68(5): 757-767.

【8】Dudzik K. Mechanical properties of 5083, 5059 and 7020 aluminum alloys and their welded by MIG[J]. Journal of KONES Power train and Transport, 2011, 17(3): 73-77.

【9】Dudzil K. Influence of joining method for hardness distribution in joints of AlZn5Mg1 Alloy[J]. Journal of Kones Powertrain and Transport, 2010, 17(4): 137-141.

【10】Li Jianmin, Wang Chunming, Yan Fei, et al.. Study on microstructure and mechanical properties of 6005A joint in laser-MIG hybrid welding[J]. Laser Technology, 2014, 38(6): 733-737.
李建敏, 王春明, 闫飞, 等. 6005A 激光-MIG 复合焊接头组织及力学性能研究[J]. 激光技术, 2014, 38(6): 733-737.

【11】Xu Lianghong, Tian Zhiling, Peng Yun, et al.. Comparison of MIG welding and laser-MIG welding of high strength aluminum alloy[J]. Transactions of the China Welding Institution, 2007, 28(2): 38-43.
许良红, 田志凌, 彭云, 等. 高强铝合金的MIG 以及激光-MIG 焊接工艺对比[J]. 焊接学报, 2007, 28(2): 38-43.

【12】Tan Bing, Ma Bing, Zhang Lijun, et al.. Microstructure and properties of welding joints of aluminum alloy with medium thickness by the laser-MIG hybrid welding[J]. Ordnance Material Science and Engineering, 2010, 33(5): 17-20.
谭兵, 马冰, 张立君, 等. 中厚度铝合金激光-MIG 复合焊接组织与性能研究[J]. 兵器材料科学与工程, 2010, 33(5): 17-20.

【13】Gao Hongyi, Xie Honglan, Chen Jianwen, et al.. Experimental research on hard X-ray phase-contrast imaging[J]. Chinese J Lasers, 2005, 32(2): 167-169.
高鸿奕, 谢红兰, 陈建文, 等. 硬X 射线相位衬度成像的试验研究[J]. 中国激光, 2005, 32(2): 167-169.

【14】Wu Shengchuan, Zhu Zongtao, Li Xiangwei. Laser Welding of Aluminum Alloys and the Performance Evaluation[M]. Beijing: National Defense Industry Press, 2014.
吴圣川, 朱宗涛, 李向伟. 铝合金的激光焊接及性能评价[M]. 北京: 国防工业出版社, 2014.

【15】Wu Shengchuan, Zhang Weihua, Jiao Huisheng, et al.. Towards the softening mechanism of hybrid laser arc welded 7075-T6 high strength aluminum alloys[J]. Science China: Technological Science, 2013, 43(7): 785-792.
吴圣川, 张卫华, 焦汇胜, 等. 激光-电弧复合焊接7075-T6铝合金接头软化行为[J]. 中国科学E: 技术科学, 2013, 43(7): 785-792.

【16】Mathers G. The Welding of Aluminum and its Alloys[M]. Cambiridge: Woodhead Publishing Ltd, 2002.

【17】Hepples W, Thornton M C, Holroyd N J H. Microstructural characterization of white zones in weldable 7000 series alloys[J]. Journal of Materials Science, 1992, 27(21): 5720-5726.

【18】Zhao Lin, Tsukamoto S, Arakane G, et al.. Influence of welding parameters on weld depth and porosity in high power fiber laser welding [J]. Chinese J Lasers, 2013, 40(11): 1103004.
赵琳, 塚本进, 荒金吾郎, 等. 大功率光纤激光焊接过程中工艺参数对熔深和气孔的影响[J]. 中国激光, 2013, 40(11): 1103004.

【19】Rudy J F, Rupert E J. Effects of porosity on mechanical properties of aluminum welds[J]. Welding Journal, 1970, 49(7): 322-336.

【20】Lee Y L, Pan J, Hathaway R, et al.. Fatigue Testing and Analysis: Theory and Practice[M]. Oxford: Elsevier Inc, 2005.

引用该论文

Hu Yanan,Wu Shengchuan,Zhang Siqi,Jiao Huisheng,Fu Yanan. Three-Dimensional X-Ray Micro-Tomography Based Microstructure and Mechanical Performance of Hybrid Laser Welded AA7020[J]. Chinese Journal of Lasers, 2016, 43(1): 0103007

胡雅楠,吴圣川,张思齐,焦汇胜,付亚楠. 基于三维X 射线成像的激光复合焊接7020 铝合金的组织与力学特性演变[J]. 中国激光, 2016, 43(1): 0103007

被引情况

【1】胡雅楠,吴圣川,宋哲,付亚楠,袁清习. 激光复合焊接7020铝合金的疲劳性能及损伤行为. 中国激光, 2018, 45(3): 302003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF