中国激光, 2016, 43 (1): 0106001, 网络出版: 2015-12-21   

激光冲击强化和时效处理对AZ80 镁合金形变孪晶及析出相的影响

Effect of Laser Shock Peening and Aging Treatment on Deformation Twins and Precipitates of AZ80 Magnesium Alloy
作者单位
1 江苏大学材料科学与工程学院, 江苏 镇江 212013
2 上海交通大学密西根学院, 上海 200240
3 宝鸡市博信金属材料有限公司, 陕西 宝鸡 721013
摘要
采用固溶+激光冲击强化(LSP)+时效方法,研究了AZ80镁合金轧板和铸态组织参数(形变孪晶和析出相)和残余应力演变,以及时效处理对其影响。结果表明,固溶+LSP处理后轧板强化层内形成高密度孪晶的形变带,铸态合金高密度形变孪晶产生于晶界附近,均产生于应力集中和高能区域,产生一次或多次孪晶,呈平行或交叉孪晶。时效后连续析出大量的颗粒状β相,其优先于形变带内、孪晶界面或片状孪晶内析出,与晶粒尺寸相关。时效后轧板和铸态冲击表面残余压应力分别为由-100.8 MPa 和-68.9 MPa 转变为-67.8 MPa 和-35.9 MPa,即应力松弛为32.7%和48.7%。LSP 次表层硬化效果明显,其时效强化效果较弱。残余压应力及其热稳定性是影响高密度形变孪晶的形成主要因素之一。
Abstract
In order to study the effect of laser shock processing (LSP) on mechanical properties of magnesium alloys, the tensile stress-strain curves and microstructures of AZ31 and AZ80D-T6 magnesium alloys are investigated by electronic universal tensile machine and with Nd: glass laser with the wavelength of 1064 nm and pulse width of 20 ns. The results show that after LSP, the tensile strength of AZ80-T6 and AZ31 alloys are increased by 4.6% and 15.7%, the surface hardness are increased by 22.7% and 31.8%, respectively. The strengthening effect of LSP on AZ31 is more significant than AZ80D-T6. The LSP generates high value residual compressive stress and high-density twins as well as the lamellar or short columnar or dynamic precipitation b phases. The grains are refined and the ultrafine grains are formed. The effect of pre - aged β precipitates on LSP strengthening effect and tensile fracture characteristics are discussed.

张青来, 郑玄玄, 邵伟, 张冰昕, 韩伟东, 刘惠. 激光冲击强化和时效处理对AZ80 镁合金形变孪晶及析出相的影响[J]. 中国激光, 2016, 43(1): 0106001. Zhang Qinglai, Zheng Xuanxuan, Shao Wei, Zhang Bingxin, Han Weidong, Liu Hui. Effect of Laser Shock Peening and Aging Treatment on Deformation Twins and Precipitates of AZ80 Magnesium Alloy[J]. Chinese Journal of Lasers, 2016, 43(1): 0106001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!