首页 > 论文 > Chinese Optics Letters > 13卷 > 12期(p:123201)

Bragg reflection in a quantum periodic structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We investigate the reflected field for few-cycle ultra-short laser pulses propagating through resonant media embedded within wavelength-scale structures. Full-wave Maxwell–Bloch equations are solved numerically by using the finite-difference time-domain method. The results show that the spectral feature of the reflected spectrum is determined by the Bragg reflection condition, and that the periodic structure of a dense atomic system can be regarded as a one-dimensional photonic crystal and even as a highly reflective multilayer film. Our study explains the suppression of the frequency shifts in the reflected spectrum based on the Bragg reflection theory and provides a method to control the frequency and frequency intervals of the spectral spikes in the reflected spectrum.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/COL201513.123201

所属栏目:Ultrafast optics

收稿日期:2015-08-27

录用日期:2015-10-16

网络出版日期:2015-12-10

作者单位    点击查看

Yueyue Chen:State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201 800, ChinaUniversity of Chinese Academy of Sciences, Beijing 100039, China
Xunli Feng:Department of Physics, Shanghai Normal University, Shanghai 20023 4, China
Zhizhan Xu:State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201 800, China
and Chengpu Liu:State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201 800, China

联系人作者:联系作者(chpliu@siom.ac.cn)

备注:This work was supported by the National Natural Science Foundation of China under Grant Nos. 11374318 and 11374315. C.L. is appreciative of the support from the 100-Talents Project of the Chinese Academy of Sciences and the Department of Human Resources and Social Security of China.

【1】K. Busch, G. V. Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Phys. Rep.444, 101 (2007).

【2】W. Yang, S. Gong, Y. Niu, and Z. Xu, Chin. Opt. Lett.3, 435 (2005).

【3】B. Liu, S. Gong, X. Song, and S. Jin, Chin. Opt. Lett.3, 278 (2005).

【4】H. Yao, Y. Niu, Y. Peng, and S. Gong, Chin. Opt. Lett.10, 011901 (2012).

【5】M. O. Scully, and M. S. Zubairy, Quantum Optics (University Press, 2001).

【6】A. Blais, R. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A69, 062320 (2004).

【7】D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

【8】H. Leblond, and D. Mihalache, Phys. Rep.523, 61 (2013).

【9】R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, Phys. Rev. A52, 3082 (1995).

【10】M. Wegener, Extreme Nonlinear Optics (SpringerVerlag, 2005).

【11】S. Hughes, Phys. Rev. Lett.81, 3363 (1998).

【12】O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. K rtnerand, Phys. Rev. Lett.87, 057401 (2001).

【13】V. P. Kalosha, and J. Herrmann, Phys. Rev. Lett.83, 544 (1999).

【14】D. V. Novitsky, Phys. Rev. A86, 063835 (2012).

【15】W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, Phys. Rev. Lett.99, 133602 (2007).

【16】N. Cui, and M. A. Macovei, New J. Phys.14, 093031 (2012).

【17】X. Song, W. Yang, Z. Zeng, R. Li, and Z. Xu, Phys. Rev. A82, 053821 (2010).

【18】X. T. Xie, and M. A. Macovei, Phys. Rev. Lett104, 073902 (2010).

【19】L. Guo, X. Xie, and Z. Zhan, Chin. Phys. B22, 094212 (2013).

【20】X. Song, M. Yan, M. Wu, Z. Sheng, Z. Hao, C. Huang, and W. Yang, J. Opt.17, 055503 (2015).

【21】K. S. Yee, IEEE Trans. Antennas Propag.14, 302 (1996).

【22】A. Taflove, and M. E. Brodwin, IEEE Trans. Microwave Theory Tech.23, 623 (1975).

【23】Y. Chen, X. Feng, and C. Liu, Opt. Express23, 240039 (2015).

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF