首页 > 论文 > 激光与光电子学进展 > 53卷 > 1期(pp:11701--1)

结合区域收缩和贪婪策略的荧光分子断层成像

Fluorescence Molecular Tomography via Greedy Method Combinedwith Region-Shrinking Strategy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为降低荧光分子断层成像(FMT)重建的病态性,受压缩感知理论启发,提出一种结合自适应可行区域迭代收缩策略和分段正交匹配追踪算法的重建方法。通过选取高荧光产额节点所在区域,迭代缩小可行区域,使目标函数有一个全局最优解。数字鼠模型上单目标及双目标重建结果表明,贪婪算法结合区域收缩策略不仅可以显著提高荧光目标的定位精度和荧光产额的定量分布,还可以降低算法对参数选取的依赖。物理仿体实验进一步验证了该方法在实际FMT 应用中的可行性和稳定性。

Abstract

To reduce the ill- posedness of reconstruction for fluorescence molecular tomography (FMT), a reconstruction method combining adaptively iterative- shrinking permissible region strategy with subsection orthogonal matching pursuit algorithm is inspired by compressive sensing theory. The region of mesh nodes with higher fluorescent yield is chosen to iteratively shrink permissible region and make the objective function have a global optimal solution. In simulation experiments on digital mouse model, reconstruction results for single target and double targets demonstrate that greedy algorithm combining with shrink region strategy can not only significantly improve localization accuracy of fluorescent target and quantitative distribution of fluorescent yield, but also reduce dependence of algorithm on parameters choice. Physical simulation experiment further validates feasibility and stability of the proposed method in practical FMT applications.

投稿润色
补充资料

中图分类号:TP391;Q632

DOI:10.3788/lop53.011701

所属栏目:医用光学与生物技术

基金项目:国家自然科学基金(61372046,61401264)

收稿日期:2015-05-28

修改稿日期:2015-08-15

网络出版日期:2016-12-18

作者单位    点击查看

董芳:西北大学信息科学与技术学院, 陕西 西安 710069
侯榆青:西北大学信息科学与技术学院, 陕西 西安 710069
余景景:陕西师范大学物理与信息技术学院, 陕西 西安 710062
郭红波:西北大学信息科学与技术学院, 陕西 西安 710069
贺小伟:西北大学信息科学与技术学院, 陕西 西安 710069

联系人作者:董芳(dongfang@stumail.nwu.edu.cn)

备注:董芳(1990—),女,硕士研究生,主要从事医学图像处理方面的研究。

【1】Bai J, Xu Z. Fluorescence Molecular Tomography[M]. Berlin: Springer, 2013: 185-216.

【2】Deliolanis N C, Ntziachristos V. Fluorescence molecular tomography of brain tumors in mice[J]. Cold Spring Harbor Protocols, 2013(5): 074245.

【3】Zanca C, del Mar Inda M, Bonavia R, et al.. In vivo visualization of heterogeneous cancer cell populations by fluorescence molecular tomography[J]. Cancer Research, 2014, 74(19): 4933.

【4】Liu X, Yan Z Z, Lu H B. Performance evaluation of a priori information on reconstruction of fluorescence molecular tomography[J]. Access, IEEE, 2015, 3: 64-72.

【5】An Y, Liu J, Zhang G L, et al.. A novel region reconstruction method for fluorescence molecular tomography[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(7): 1818-1926.

【6】Song X L, Wang D F, Chen N G, et al.. Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm[J]. Opt Express, 2007, 15(26): 18300-18317.

【7】Yi H J, Chen D F, Qu X C, et al.. Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography[J]. Appl Opt, 2012, 51(7): 975-986.

【8】Han D, Tian J, Liu K, et al.. Sparsity-promoting tomographic fluorescence imaging with simplified spherical harmonics approximation[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(10): 2564-2567.

【9】Nu?ez M Z, Arias F X. Comparative analysis of sparse signal reconstruction. Algorithms for compressed sensing[C]. Latin American and Caribbean Conference for Engineering and Technology, 2014.

【10】Needell D, Tropp J, Vershynin R. Greedy signal recovery review[C]. Asilomar Conference on Signals, Systems and Computers, 2008: 1048-1050.

【11】He X W, Liang J M, Wang X R, et al.. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Opt Express, 2010, 18(24): 24825-24841.

【12】Han D, Tian J, Zhu S P, et al.. A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization[J]. Opt Express, 2010, 18(8): 8630-8646.

【13】Zhang Q T, Zhao H, Chen D F, et al.. Source sparsity based primal- dual interior- point method for three- dimensional bioluminescence tomography[J]. Opt Commun, 2011, 284(24): 5871-5876.

【14】Xue Z W, Ma X B, Zhang Q, et al.. Adaptive regularized method based on homotopy for sparse fluorescence tomography[J]. Appl Opt, 2013, 52(11): 2374-2384.

【15】Han D, Yang X, Liu K, et al.. Efficient reconstruction method for L1 regularization in fluorescence molecular tomography [J]. Appl Opt, 2010, 49(36): 6930-6937.

【16】Xue Z, Han D, Tian J. Fast and robust reconstruction approach for sparse fluorescence tomography based on adaptive matching pursuit[C]. SPIE, 2011, 8311: 831107.

【17】Guo H, Hou Y, He X, et al.. Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350057.

【18】Jin Chen, Guo Hongbo, Hou Yuqing, et al.. Bioluminescence tomography reconstruction based on simplified spherical harmonics approximation model and sparse reconstruction by separable approximation[J]. Acta Optica Sinica, 2014, 34(6): 0617001.
金晨, 郭红波, 侯榆青, 等. 基于变量分离近似稀疏重构和简化球谐近似的生物发光断层成像[J]. 光学学报, 2014, 34(6): 0617001.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF