激光与光电子学进展, 2016, 53 (1): 011902, 网络出版: 2015-12-29  

超短抽运脉冲作用下半导体光放大器增益超快恢复过程分析 下载: 546次

Analysis of the Ultrafast Recovery Process of Output Gain of Semiconductor Optical Amplifier with the Effect of Ultrashort Pump Pulse
作者单位
江南大学物联网工程学院, 江苏 无锡 214122
摘要
为了对半导体光放大器(SOA)进行动态模拟,从超快非线性效应的传输方程和载流子速率方程出发,分别研究了载流子浓度脉动(CDP)、载流子加热(CH)、光谱烧孔(SHB)效应对SOA 输出增益和相位的影响,并改变输入脉冲峰值功率和SOA 的弛豫时间模拟CH 增益曲线的变化情况。结果表明,在超快恢复过程中,载流子加热效应对增益饱和的贡献较大,SHB 效应贡献的较少,CDP 效应则产生缓慢恢复过程。CDP 效应是产生非线性相移的最主要原因,SHB 效应对探测光相移的贡献可以忽略不计,CH 效应可以产生约0.8 rad 的相移贡献。CH 效应的强度大小可以影响增益饱和以及相位变化的程度,但不能够缩短超快恢复过程的时间。输入脉冲的能量能够改变CH 增益的饱和程度,随着弛豫时间的缩短,CH 效应的峰值时间和SOA 增益超快恢复时间都逐渐减小。
Abstract
The semiconductor optical amplifier (SOA) is simulated by the transmission equation and carrier rate equation of ultrafast nonlinear effects. The effects of carrier density pulsation (CDP), carrier heating (CH) and spectral burning hole (SHB) on SOA output gain and phase are studied respectively. The input pulse peak power and the relaxation time of SOA are changed to simulate the CH gain curve. The result shows that in the ultrafast recovery process, the CH contributes more to the saturated than the SHB effect; the CDP effect produces the slow recovery process. The CDP effect is the main reason for the nonlinear phase shift. The effect of SHB on the phase shift of the probe can be ignored. The contribution of CH to the phase shift can produce about 0.8 rad. The intensity of CH can affect the degree of gain saturation and phase shift, but can′t shorten the ultrafast recovery time. Input pulse energy can change the degree of saturation of the CH gain, and with shorter relaxation time, the peak time of CH effect and the gain of SOA ultrafast recovery time decrease gradually.

王丹, 余震虹. 超短抽运脉冲作用下半导体光放大器增益超快恢复过程分析[J]. 激光与光电子学进展, 2016, 53(1): 011902. Wang Dan, Yu Zhenhong. Analysis of the Ultrafast Recovery Process of Output Gain of Semiconductor Optical Amplifier with the Effect of Ultrashort Pump Pulse[J]. Laser & Optoelectronics Progress, 2016, 53(1): 011902.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!