首页 > 论文 > 中国激光 > 47卷 > 3期(pp:301005--1)

深紫外光栅反常偏振器件的设计与分析

Design and Analysis of Inverse Polarization Grating Devices for Deep Ultraviolet Light

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现金属光栅偏振器件在光刻机偏振照明系统中的应用,基于共振域光栅的反常偏振效应,提出一种以二氧化硅为基底、铝与氟化镁作为栅线材料的介质-金属光栅偏振器。与传统的亚波长金属光栅偏振器相比,该偏振器的光栅周期接近入射波长(0.19~0.20 μm),表现出透射TE偏振光、反射TM偏振光的反常特性。由时域有限差分算法(FDTD)的数值模拟结果可得,当波长为0.193 μm的光垂直入射时,该光栅偏振器对TE偏振光的透过率大于60%,偏振消光比大于180。与具有相同结构参数和栅线材料的单层金属光栅偏振器相比,该介质-金属光栅偏振器在深紫外波段具有良好的偏振性能,TE偏振光透过率提升了约10%,偏振消光比提升了4.5倍左右(在0.193 μm波长下)。

Abstract

To realize the application of a metal grating polarizer in a polarization illumination system for photolithography, a dielectric-metal grating polarizer based on the inverse polarization effect of a resonant-domain grating is proposed. The grating comprises aluminum (Al), magnesium fluoride (MgF2), and a silicon dioxide (SiO2) substrate. In comparison with general sub-wavelength metallic gratings, the period of the proposed polarizer is close to the wavelength of the incident light (0.19--0.20 μm), and it exhibits the inverse polarization effect of transmitting transverse electric (TE) polarized light and reflecting transverse magnetic (TM) polarized light. Finite difference time domain (FDTD) simulation results indicate that the transmittance of TE-polarized light exceeds 60% and the polarization extinction ratio is greater than 180 when light having a wavelength of 0.193 μm is incident normally. In comparison with a single-layer metal grating polarizer constructed using the same materials and structural parameters, the proposed dielectric-metal grating polarizer exhibits better polarization performance in the deep ultraviolet band, with the transmittance and extinction ratio approximately increased by 10% and 4.5 times at wavelength of 0.193 μm, respectively.

广告组5 - 光束分析仪
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.0301005

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金青年科学基金、政府间国际科技创新合作重点专项、上海市科技人才计划、上海市青年科技英才扬帆计划、上海市自然科学基金;

收稿日期:2019-09-04

修改稿日期:2019-10-28

网络出版日期:2020-03-01

作者单位    点击查看

张冲:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学料科学与光电工程中心, 北京 100049
胡敬佩:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学料科学与光电工程中心, 北京 100049
周如意:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学料科学与光电工程中心, 北京 100049
刘铁诚:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学料科学与光电工程中心, 北京 100049
SergeyAvakaw:白俄罗斯共和国开放式股份公司“精密电子机械制造设计局-光学机械设备”, 白俄罗斯 明斯克 220033
曾爱军:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学料科学与光电工程中心, 北京 100049
黄惠杰:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学料科学与光电工程中心, 北京 100049

联系人作者:胡敬佩(hujingpei@siom.ac.cn); 曾爱军(aijunzeng@siom.ac.cn);

备注:国家自然科学基金青年科学基金、政府间国际科技创新合作重点专项、上海市科技人才计划、上海市青年科技英才扬帆计划、上海市自然科学基金;

【1】Soufli R, Hudyma R M, Spiller E, et al. Sub-diffraction-limited multilayer coatings for the 0.3 numerical aperture micro-exposure tool for extreme ultraviolet lithography [J]. Applied Optics. 2007, 46(18): 3736-3746.

【2】Naulleau P P, Denham P E, Hoef B, et al. A design study for synchrotron-based high-numerical-aperture scanning illuminators [J]. Optics Communications. 2004, 234: 53-62.

【3】Yuan Q Y, Wang X Z, Qiu Z C. Impact of polarized illumination on high NA imaging in ArF immersion lithography at 45 nm node [J]. Optik. 2009, 120(7): 325-329.

【4】Jiang J H, Li Y Q, Shen S H, et al. Design of a high-numerical-aperture extreme ultraviolet lithography illumination system [J]. Applied Optics. 2018, 57(20): 5673-5679.

【5】Zhu B E, Li S K, Wang X Z, et al. High-order aberration measurement technique for immersion lithography projection lens based on multi-polarized illuminations [J]. Acta Optica Sinica. 2018, 38(7): 0712004.
诸波尔, 李思坤, 王向朝, 等. 基于多偏振照明的浸没式光刻机投影物镜高阶波像差快速检测技术 [J]. 光学学报. 2018, 38(7): 0712004.

【6】Fellows N N, Sato H, Lin Y D, et al. Dichromatic color tuning with InGaN-based light-emitting diodes [J]. Applied Physics Letters. 2008, 93(12): 121112.

【7】Ren H W, Fan Y H, Wu S T. Prism grating using polymer stabilized nematic liquid crystal [J]. Applied Physics Letters. 2003, 82(19): 3168-3170.

【8】Soares L L, Cescato L. Metallized photoresist grating as a polarizing beam splitter [J]. Applied Optics. 2001, 40(32): 5906-5910.

【9】Dai M, Wan W W, Zhu X Y, et al. Broadband and wide angle infrared wire-grid polarizer [J]. Optics Express. 2015, 23(12): 15390-15397.

【10】Yang Z Y, Lu Y F. Broadband nanowire-grid polarizers inultraviolet-visible-near-infrared regions [J]. Optics Express. 2007, 15(15): 9510-9519.

【11】Wang J J, Walters F, Liu X M, et al. High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids [J]. Applied Physics Letters. 2007, 90(6): 061104.

【12】Weber T, K?sebier T, Szeghalmi A, et al. Iridium wire grid polarizer fabricated using atomic layer deposition [J]. Nanoscale Research Letters. 2011, 6: 558.

【13】Weber T, K?sebier T, Helgert M, et al. Tungsten wire grid polarizer for applications in the DUV spectral range [J]. Applied Optics. 2012, 51(16): 3224-3227.

【14】Drauschke A, Schnabel B, Wyrowski F. Comment on the inverse polarization effect in metal-stripe polarizers [J]. Journal of Optics A: Pure and Applied Optics. 2001, 3(1): 67-71.

【15】Honkanen M. KettunenV, Kuittinen M, et al. Inverse metal-stripe polarizers [J]. Applied Physics B: Lasers and Optics. 1999, 68(1): 81-85.

【16】Kang G G, Vartiainen I, Bai B F, et al. Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band [J]. Applied Physics Letters. 2011, 99(7): 071103.

【17】Kang G, Rahom?ki J, Dong J, et al. Enhanced deep ultraviolet inverse polarization transmission through hybrid Al-SiO2 gratings [J]. Applied Physics Letters. 2013, 103(13): 131110.

【18】Raether H. Surface plasmons on smooth and rough surfaces and on gratings [M]. Berlin, Heidelberg:Springer. 1988.

【19】Drauschke A, Schnabel B, Wyrowski F. Comment on the inverse polarization effect in metal-stripe polarizers [J]. Journal of Optics A: Pure and Applied Optics. 2001, 3(1): 67-71.

【20】He Q H, Wang G P. Physical mechanism for transmission enhancement of one-dimensional metallic gratings [J]. Laser Journal. 2003, 24(4): 29-30.
何启浩, 汪国平. 一维金属光栅的透射光增强效应的物理机制 [J]. 激光杂志. 2003, 24(4): 29-30.
He Q H, Wang G P. Physical mechanism for transmission enhancement of one-dimensional metallic gratings [J]. Laser Journal. 2003, 24(4): 29-30.
何启浩, 汪国平. 一维金属光栅的透射光增强效应的物理机制 [J]. 激光杂志. 2003, 24(4): 29-30.

【21】Yu Z, Liang R S, Chen P X, et al. Integrated tunable optofluidics optical filter based on MIM side-coupled-cavity waveguide [J]. Plasmonics. 2012, 7(4): 603-607.

【22】Wang Z W, Chu J K, Wang Q Y. Transmission analysis of single layer sub-wavelength metal gratings [J]. Acta Optica Sinica. 2015, 35(7): 0705002.
王志文, 褚金奎, 王倩怡. 单层亚波长金属光栅偏振器透射机理研究 [J]. 光学学报. 2015, 35(7): 0705002.

【23】Huang C P, Wang Q J, Zhu Y Y. Dual effect of surface plasmons in light transmission through perforated metal films [J]. Physical Review B. 2007, 75(24): 245421.

引用该论文

Zhang Chong,Hu Jingpei,Zhou Ruyi,Liu Tiecheng,Sergey Avakaw,Zeng Aijun,Huang Huijie. Design and Analysis of Inverse Polarization Grating Devices for Deep Ultraviolet Light[J]. Chinese Journal of Lasers, 2020, 47(3): 0301005

张冲,胡敬佩,周如意,刘铁诚,SergeyAvakaw,曾爱军,黄惠杰. 深紫外光栅反常偏振器件的设计与分析[J]. 中国激光, 2020, 47(3): 0301005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF