Frontiers of Optoelectronics, 2015, 8 (2): 152, 网络出版: 2016-01-07  

Resolution and contrast enhancements of optical microscope based on point spread function engineering

Resolution and contrast enhancements of optical microscope based on point spread function engineering
作者单位
State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
摘要
Point spread function (PSF) engineering-based methods to enhance resolution and contrast of optical microscopes have experienced great achievements in the last decades. These techniques include: stimulated emission depletion (STED), time-gated STED (g-STED), ground-state depletion microscopy (GSD), difference confocal microscopy, fluorescence emission difference microscopy (FED), switching laser mode (SLAM), virtual adaptable aperture system (VAAS), etc. Each affords unique strengths in resolution, contrast, speed and expenses. We explored how PSF engineering generally could be used to break the diffraction limitation, and concluded that the common target of PSF engineeringbased methods is to get a sharper PSF. According to their common or distinctive principles to reshape the PSF, we divided all these methods into three categories, nonlinear PSF engineering, linear PSF engineering, and linear-based nonlinear PSF engineering and expounded these methods in classification. Nonlinear effect and linear subtraction is the core techniques described in this paper from the perspective of PSF reconstruction. By comparison, we emphasized each method’s strengths, weaknesses and biologic applications. In the end, we promote an expectation of prospective developing trend for PSF engineering.
Abstract
Point spread function (PSF) engineering-based methods to enhance resolution and contrast of optical microscopes have experienced great achievements in the last decades. These techniques include: stimulated emission depletion (STED), time-gated STED (g-STED), ground-state depletion microscopy (GSD), difference confocal microscopy, fluorescence emission difference microscopy (FED), switching laser mode (SLAM), virtual adaptable aperture system (VAAS), etc. Each affords unique strengths in resolution, contrast, speed and expenses. We explored how PSF engineering generally could be used to break the diffraction limitation, and concluded that the common target of PSF engineeringbased methods is to get a sharper PSF. According to their common or distinctive principles to reshape the PSF, we divided all these methods into three categories, nonlinear PSF engineering, linear PSF engineering, and linear-based nonlinear PSF engineering and expounded these methods in classification. Nonlinear effect and linear subtraction is the core techniques described in this paper from the perspective of PSF reconstruction. By comparison, we emphasized each method’s strengths, weaknesses and biologic applications. In the end, we promote an expectation of prospective developing trend for PSF engineering.

Yue FANG, Cuifang KUANG, Ye MA, Yifan WANG, Xu LIU. Resolution and contrast enhancements of optical microscope based on point spread function engineering[J]. Frontiers of Optoelectronics, 2015, 8(2): 152. Yue FANG, Cuifang KUANG, Ye MA, Yifan WANG, Xu LIU. Resolution and contrast enhancements of optical microscope based on point spread function engineering[J]. Frontiers of Optoelectronics, 2015, 8(2): 152.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!