首页 > 论文 > 激光与光电子学进展 > 53卷 > 2期(pp:21202--1)

Mueller 矩阵成像偏振仪的误差标定和补偿研究

Study on Calibration and Error Compensation of Mueller Matrix Imaging Polarimeter

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

Mueller 矩阵成像偏振仪是测量材料和器件偏振特性的重要仪器,也是测量浸没光刻机偏振像差的检测仪器,该偏振仪由偏振态产生器和偏振态分析器组成。其组成中的λ/4 波片相位延迟量误差及其快轴方位角误差与偏振片透光轴的方位角误差是影响Mueller 矩阵成像偏振仪测量精度的主要误差源。通过对本课题组研制的Mueller 矩阵成像偏振仪中5 个主要误差因素进行标定和补偿,显著提高了其测量精度。利用傅里叶分析法获得各项傅里叶系数,并根据各个误差与傅里叶系数的关系,实现了这些误差的标定,即达到对Mueller 矩阵成像偏振仪误差标定的目的。根据标定出的误差大小对Mueller 矩阵成像偏振仪进行了补偿。实验结果表明,通过对器件参数误差标定和补偿,Mueller 矩阵成像偏振仪的测量精度由0.2015 提高到0.1051,提高了47.84%。最后用该Mueller 矩阵成像偏振仪对一个物镜系统的偏振像差进行了测量,重复测量精度达到了1.1%。

Abstract

Mueller matrix imaging polarimeter is an effective instrument in measuring the polarization characteristics of materials and devices as well as the polarization aberration of immersion lithography tool, which is composed by polarization state generator and polarization state analyzer. The retardance and fast axis alignmen in the quarter-wave plates and the alignment error in polarizer are the main factors in influencing the measurement accuracy of the Mueller matrix imaging polarimeter. We measure the five primary parameter errors of the Mueller matrix imaging polarimeter of our laboratory developed. The measurement accuracy can be significantly enhanced. The calibration and compensation are carried out by Fourier analysis method. The experiment results show that the measurement accuracy of Mueller matrix imaging polarimeter has been increased from 0.2015 to 0.1051, which is 47.84% better than the un-calibrated one. At last, we measure the polarization aberration of projector with the calibrated Mueller matrix imaging polarimeter. The measurement repeatability is better than 1.1%.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436.3

DOI:10.3788/lop53.021202

所属栏目:仪器,测量与计量

责任编辑:韩峰

收稿日期:2015-07-01

修改稿日期:2015-07-15

网络出版日期:2016-01-08

作者单位    点击查看

李建慧:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
郑猛:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
张雪冰:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
李艳秋:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081

联系人作者:李建慧(ljhjy@bit.edu.cn)

备注:李建慧(1990—),女,博士研究生,主要从事偏振检测技术方面的研究。

【1】Hu Zhonghua, Yang Baoxi, Zhu Jing, et al.. Design of diffractive optical element for pupil shaping optics in projection lithography system[J]. Chinese J Lasers, 2013, 40(6): 0616001.
胡中华, 杨宝喜, 朱菁, 等. 用于投影光刻机光瞳整形的衍射光学元件设计[J]. 中国激光, 2013, 40(6): 0616001.

【2】Rui Dawei, Shi Zhenguang, Yuan Wenquan, et al.. Pupil non- balance calibration for lithographic lens[J]. Chinese J Lasers, 2014, 41(9): 0916002.
芮大为, 史振广, 袁文全, 等. 光刻物镜光瞳极平衡性标定方法[J]. 中国激光, 2014, 41(9): 0916002.

【3】Cai Yanmin, Wang Xiangzhao, Huang Huijie. Optical design of lithography projective lens with variable total track[J]. Chinese J Lasers, 2014, 41(4): 0416003.
蔡燕民, 王向朝, 黄惠杰, 共轭距可变的光刻投影物镜光学设计[J]. 中国激光, 2014, 41(4): 0416003.

【4】D Flagello, B Geh, S Hansen. Polarization effects associated with hyper-numerical-aperture lithography[J]. J Microlith, Microfab, Microsyst, 2005, 4(3): 031104.

【5】M Totzeck, P Gr upner. How to describe polarization influence on imaging[J]. Optical Microlithography, 2005, 5754: 23-37.

【6】T Matsuyama, T Nakashima. Study of high NA imaging with polarized illumination[C]. SPIE, 2005, 5754: 1078-1089.

【7】C Kohler, W Boeij, K IngenSchena. Imaging enhancements by polarized illumination: theoryand experimental verification [C]. SPIE, 2005, 5754: 734-750.

【8】Bernd Geha, Johannes R uoff. The impact of projection lens polarization properties on lithographic process at hyper-NA [J]. Optical Microlithography, 2007, 6520: 1-18.

【9】J Kye, G McIntyre, Y Norihiro. Polarization aberration analysis in optical lithography systems[C]. SPIE, 2006, 6154: 61540E- 1-11.

【10】Russell Chipman. Polarization Aberration[D]. USA: University of Arizona, 1987.

【11】Gregory R McIntyre, Jongwook Kye, Harry Levinson, et al.. Polarization aberrations in hyper-numericalaperture projection printing: a comparison of various representations[J]. Journal of Microlithography Microfabrication and Microsystems, Microsyst, 2006, 5(3): 1-13.

【12】H Nomura, Y Furutono. In-situ polarimetry of illumination for 193-nm lithography[C]. SPIE, 2008, 6924: 69241T.

【13】H Nomura, I Higashikawa. In-situ Mueller matrix polarimetry of projection lenses for 193-nm lithography[C]. SPIE, 2010, 7640: 76400Q.

【14】H Nomura, I Higashikawa. Mueller matrix polarimetry for immersion lithography tools with a polarization monitoring system at the wafer plane[C]. SPIE, 2009, 7520: 752012-1.

【15】D H Goldstein. Mueller matrix dual-rotating retarder polarimeter[J]. Appl Opt, 1992, 31: 6676-6683.

【16】Li Lei, Li Yanqiu, Chi Quan, et al.. Optimized imaging polarimeter for measuring polarization properties of hyper numerical aperture lithography tools[C]. SPIE, 2014, 9282: 928232.

【17】Li Lei. Research on Polarimetric Technology for Lithography Exposer System[D]. Beijing: Beijing Institute of Technology, 2014.
李磊. 光刻投影曝光系统的偏振检测技术研究[D]. 北京:北京理工大学, 2014.

【18】Zhang Xuebing, Li Yanqiu, Zheng Meng, et al.. Calibration and error compensation of an imaging Stokes polarimeter based on rotating quarter-wave plate method[J]. Chinese J Lasers, 2015, 42(7): 0708007.
张雪冰, 李艳秋, 郑猛, 等. 旋转波片法成像斯托克斯偏振仪误差标定和补偿[J]. 中国激光, 2015, 42(7): 0708007.

【19】Dennis H Goldstein, Russell AChipman. Error analysis of a Mueller matrix imaging polarimeter[J]. J Opt Soc Am A, 1990, 7(4): 693-700.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF