基于空芯光子晶体光纤气体参考腔的高灵敏度氨气检测
High Sensitivity Ammonia Gas Detection with Hollow-Core Photonic Bandgap Fibers Reference Gas Cavity
摘要
采用石英增强光声光谱检测系统,并引入空芯光子晶体光纤作为气体参考气室,实现对痕量氨气的高灵敏度检测。参考气室采用长5 m 的空芯光子晶体光纤,两端熔接单模光纤,内部填充标准氨气。通过分析空芯光子晶体光纤的模态干涉,获得低干涉噪声的透射谱。气体填充过程中,控制填充压强与时间,提高谱线分辨率,完成分布反馈式(DFB)激光器波长的精确锁定,提高检测精度。测量参考气体腔内氨气吸收谱线线宽,并与高分辨率光谱谱线(HITRAN)数据库数据对比验证实验结果。采用光声光谱检测系统,优化调制参数,获得氨气噪声等效浓度(即指体积分数)为6.74×10-6(3σ)。
Abstract
A system based on quartz enhanced photo- acoustic spectroscopy technique is investigated for trace ammonia gas detection. And hollow- core photonic band- gap fiber is introduced as reference gas cavity for high accuracy and sensitivity. The reference gas cavity is consisted with a 5 m long hollow- core photonic bandgap fiber, which filles with ammonia gas and splices with single-mode optical fibers at both ends. Modes interference is analyzed to obtain transmission spectrum with low interference noise. For improving detection accuracy, gas filling time and pressure are controlled in filling procedure. Ammonia absorption line width in ref? erence gas cavity of hollow-core photonic bandgap fiber is measured, and compared with the high-resolution transmission (HITRAN) database data. By this method, wavelength of distributed feed back (DFB) laser is locked accurately. Quartz enhanced photo- acoustic spectroscopy system is used for ammonia detection with optimal modulation parameters, which yields that a noise equivalent concentration (namely volume fraction) of ammonia is 6.74×10-6 (3 s).
中图分类号:TN2
所属栏目:光通信
基金项目:国家自然科学基金(61203204)
收稿日期:2015-08-24
修改稿日期:2015-10-30
网络出版日期:--
作者单位 点击查看
姜萌:北京航天控制仪器研究所, 北京 100094
王学锋:北京航天控制仪器研究所, 北京 100094
梁鹄:北京航天控制仪器研究所, 北京 100094
王聪颖:北京航天控制仪器研究所, 北京 100094
梁同利:北京航天控制仪器研究所, 北京 100094
于文鹏:北京航天控制仪器研究所, 北京 100094
联系人作者:冯巧玲(758092041@qq.com)
备注:冯巧玲(1986—),女,硕士,工程师,主要从事光纤传感方面的研究。
【1】Kosterev A A, Wysocki G, Bakhirkin Y A, et al.. Application of quantum cascade lasers to trace gas analysis[J]. Appl Phys B-Lasers O, 2008, 90(2): 165-176.
【2】Mccurdy M R, Bakhirkin Y, Wysocki G, et al.. Recent advances of laser-spectroscopy-based techniques for applications in breath analysis [J]. J Breath Res, 2007, 1(1): 014001.
【3】Kosterev A A, Bakhirkin Y A, Curl R F, et al.. Quartz enhanced photoacoustic spectroscopy[J]. Opt Lett, 2002, 27(21): 1902-1904.
【4】Kosterev A A, Tittel F K, Serebryakov D V, et al.. Applications of quartz tuning forks in spectroscopic gas sensing[J]. Rev SciInstrum, 2005, 76(4): 043105.
【5】Lewicki R, Wysocki G, Kosterev A A, et al.. Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2007, 87(1): 157-162.
【7】Zheng Huadan, Dong Lei, Liu Yanyan, et al.. Experimental research on optimization of QEPAS based spectrophone[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3187-3191.
郑华丹, 董磊, 刘研研, 等. 石英晶振用于石英增强光声光谱系统的优化实验研究[J]. 光谱与光谱学分析, 2013, 33(12): 3187- 3191.
【9】Lü Lei, Wei Yubin, Zhao Yanjie, et al.. Research progress of reference gas cell[C]. OFSIS, 2015: 124-128.
吕蕾, 魏玉宾, 赵艳杰, 等. 参考气室研究进展[C]. 光纤和光电子传感器及其安全应用国际会议, 2015: 124-128.
【11】Li Jing, Wang Wei, Wang Xuefeng, et al.. Pivotal technology and development of photonic crystal fiber-optic gyroscope[J]. Navigation and Control, 2014, 13(1): 51-56.
李晶, 王巍, 王学锋, 等. 光子晶体光纤陀螺仪关键技术及进展[J]. 导航与控制, 2014, 13(1): 51-56.
【12】Cregan R F, Mangan B J, Knight J C, et al.. Single mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537- 1539.
【13】Ritari T, Tuominen J, Ludvigsen H, et al.. Gas sensing using air-guiding photonic bandgap fibers[J]. Opt Express, 2004, 12(17): 4080- 4087.
【14】Lehmann H, Bartelt H, Willsch R, et al.. In-line gas sensor based on a photonic bandgap fiber with laser-drilled lateral microchannels [C]. IEEE Sens J, 2011, 11(11): 2926-2931.
【15】Li X, Liang J, Lin S, et al.. NIR spectrum analysis of natural gas based on hollow-core photonic bandgap fiber[C]. IEEE Sens J, 2012, 12(7): 2362-2367.
【18】Xiao L, Demokan M S, Jin W, et al.. Fusion on splicing photonic crystal fiber and conventional single-mode fibers: Microholecollape effect[J]. J Lightwave Technol, 2007, 25(11): 3563-3574.
【19】Thapa R, Knabe K, Corwin K L, et al.. Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells[J]. Opt Express, 2006, 14(21): 9576-9583.
【20】Parry J P, Griffiths B C, Gayraud N. Towards practical gas sensing with micro-structured fibres[J]. Meas Sci Technol, 2009, 20(7): 075301.
【21】Jin W, Ho H L, Cao Y C, et al.. Gas detection with micro- and nano-engineered optical fibers[J]. Opt Fiber Technol, 2013, 19(6): 741- 759.
【22】Fan Yang, Wei Jin, Yingchun Cao, et al.. Towards high sensitivity gas detection with hollow-core photonic bandgap fibers[J]. Opt Express, 2014, 22(20): 24894-24907.
【23】Petrovich M N, Poletti F, Richardson D J. Analysis of modal interference in photonic bandgap fibres[C]. International Conference on Transparent Optical Networks (ICTON), 2010: 1-4.
【25】Zhao Xuanyi, Li Rongbing, Liu Jianye, et al.. Optimum design method of micro-miniature data collecting system[J]. Navigation and Control, 2014, 13(6): 40-43.
赵宣懿, 李荣冰, 刘建业, 等. 微小型数据采集系统优化设计方法研究[J]. 导航与控制, 2014, 13(6): 40-43.
引用该论文
Feng Qiaoling,Jiang Meng,Wang Xuefeng,Liang Hu,Wang Congying,Liang Tongli,Yu Wenpeng. High Sensitivity Ammonia Gas Detection with Hollow-Core Photonic Bandgap Fibers Reference Gas Cavity[J]. Chinese Journal of Lasers, 2016, 43(3): 0305001
冯巧玲,姜萌,王学锋,梁鹄,王聪颖,梁同利,于文鹏. 基于空芯光子晶体光纤气体参考腔的高灵敏度氨气检测[J]. 中国激光, 2016, 43(3): 0305001
被引情况
【1】马 健,余海湖,熊家国,郑 羽. 光子晶体光纤传感器研究进展. 激光与光电子学进展, 2017, 54(7): 70006--1
【2】李志军,陈伟根,季 焱,曹玲燕,吴 淼,张建学,禚 莉,喻勇高. 基于分布反馈激光器双波长调制的微量气体测量方法. 激光与光电子学进展, 2017, 54(11): 111404--1
【3】林华,张娴,朱晓松,石艺尉. 基于金属-介质-金属多层膜结构的空芯光纤折射率传感器. 光学学报, 2018, 38(6): 606006--1
【4】寇潇文,周宾,刘训臣,陈海轩,张勐,刘鹏飞. 腔衰荡光谱方法测量大气中痕量NH3的浓度. 光学学报, 2018, 38(11): 1130001--1
【5】况心怡,钮月萍,龚尚庆. 空芯光子带隙光纤与单模光纤的电弧熔接研究. 激光与光电子学进展, 2020, 57(17): 170601--1