首页 > 论文 > 强激光与粒子束 > 28卷 > 2期(pp:21002--1)

微通道冷却器内流动和传热特性的数值模拟

Numerical simulation of flow and heat transfer characteristics in microchannel cooler

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为满足固体激光器用微通道冷却器的换热要求,根据冷却器结构分别建立了二维和三维物理模型,利用计算流体力学方法首先对比研究两者的流动特性,然后考察雷诺数和玻片生热量对微通道流动和传热特性的影响。结果表明:对于类似大平板间的矩形微通道层流流动区域,其流动及传热特性可直接采用二维简化模型进行模拟分析; 对于重点关注的转捩区,采用三维模型模拟分析更好; 当雷诺数增大到转捩点,流体的传热效果得到明显增强; 随着雷诺数的增大,玻片生热量对通道内最低压力需求的影响逐渐减小; 不同玻片生热量对微通道流动影响不可忽略,对努赛尔数和通道总压降基本无影响。

Abstract

Computational fluid dynamics simulation was conducted in studying characteristics of fluid flow and heat transfer of microchannel cooler installed in a solid-state laser. Two-dimensional and three-dimensional physical models were developed, respectively, based on the cooler structure. Fluid flow within the microchannel was first investigated with the two models, then effects of Reynolds number and heat generation rate of crystal slice on fluid flow and heat transfer in the cooler were numerically examined. Results showed that the two-dimensional model was sufficient to describe the fluid flow and heat transfer behaviors in the laminar flow region in the rectangular microchannel between two parallel planes, and the three-dimensional model was more suitable for the transition region. When the Reynolds number was increased to the transition point, the effect of heat transfer from fluid flow was significantly enhanced. With the Reynolds number rising, the effect of the heat on minimum pressure required within the channel was gradually reduced. The change in the heat had an important influence on fluid flow, but little influence on Nusselt number and total pressure drop of the channel.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TQ021.3

DOI:10.11884/hplpb201628.021002

所属栏目:高功率激光与光学

基金项目:中国科学院化学激光重点实验室开放课题(20140025)

收稿日期:2015-09-29

修改稿日期:2015-12-04

网络出版日期:--

作者单位    点击查看

潘娜娜:大连理工大学 化工与环境生命学部, 辽宁 大连 116024
潘艳秋:大连理工大学 化工与环境生命学部, 辽宁 大连 116024
俞 路:大连理工大学 化工与环境生命学部, 辽宁 大连 116024
贾春燕:中国科学院 大连化学物理研究所, 辽宁 大连 116023
徐 志:中国科学院 大连化学物理研究所, 辽宁 大连 116023
刘万发:中国科学院 大连化学物理研究所, 辽宁 大连 116023
桑凤亭:中国科学院 大连化学物理研究所, 辽宁 大连 116023

联系人作者:潘娜娜(penny@mail.dlut.edu.cn)

备注:潘娜娜(1991-),女,硕士研究生,从事化工传递过程研究

【1】童立新, 高清松, 蒋建锋, 等. 高功率二极管泵浦模块热效应补偿研究[J]. 强激光与粒子束, 2005, 17(s0): 125-128. (Tong Lixin, Gao Qingsong, Jiang Jianfeng, et al. Research of thermal effects compensation of high power diode laser module. High Power Laser and Particle Beams, 2005, 17(s0): 125-128)

【2】岱钦, 李新忠, 王希军. LDA侧面泵浦Nd:YAG激光器的热效应分析[J]. 强激光与粒子束, 2007, 19(2): 197-201. (Dai Qin, Li Xinzhong, Wang Xijun. Thermal effect in LDA side pumping Nd:YAG solid state lasers. High Power Laser and Particle Beams, 2007, 19(2): 197-201)

【3】董延涛, 赵智刚, 刘崇, 等. 热效应对固体激光器偏振特性和基模输出特性的影响[J]. 中国激光, 2009, 36(7): 1759-1765. (Dong Yantao, Zhao Zhigang, Liu Chong, et al. Influence of thermal effects on polarizability and output character of TEM00-mode of solid state laser. Chinese Journal of Lasers, 2009, 36(7): 1759-1765)

【4】Fan T Y. Heat generation in Nd:YAG and Yb:YAG [J]. IEEE Journal of Quantum Electronics, 1993, 29(6): 1457-1459.

【5】克希耐尔. 固体激光工程[M]. 北京: 科学出版社, 2002. (Koechner W. Solid-state laser engineering. Beijing: Science Press, 2002)

【6】Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129.

【7】Pan Yanqiu, Lu Peng, Yu Lu, et al. Numerical simulation of flow characteristic in microchannel between parallel flat plates[J]. Applied Mechanics and Materials, 2013, 423-426: 1763-1767.

【8】Lee P S, Garimella S V. Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios[J]. International Journal of Heat and Mass Transfer, 2006, 49(17): 3060-3067.

【9】Bavière R, Favre-Marinet M, Person S L. Bias effects on heat transfer measurements in microchannel flows[J]. International Journal of Heat and Mass Transfer, 2006, 49(19): 3325-3337.

【10】Gamrat G, Favre-Marinet M, Asendrych D. Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels[J]. International Journal of Heat and Mass Transfer, 2005, 48(14): 2943-2954.

【11】Gao Pu-zhen, Le Person S, Favre-Marinet M. Scale effects on hydrodynamics and heat transfer in two-dimensional mini and microchannels[J]. International Journal of Thermal Sciences, 2002, 41(11): 1017-1027.

【12】Li Zhigang, Huai Xiulan, Tao Yujia, et al. Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks[J]. Applied Thermal Engineering, 2007, 27(17): 2803-2814.

【13】Ma Jian, Li Longjian, Huang Yanping, et al. Experimental studies on single-phase flow and heat transfer in a narrow rectangular channel[J]. Nuclear Engineering and Design, 2011, 241(8): 2865-2873.

【14】Wang Chang, Gao Puzhen, Tan Sichao, et al. Forced convection heat transfer and flow characteristics in laminar to turbulent transition region in rectangular channel[J]. Experimental Thermal and Fluid Science, 2013, 44(1): 490-497.

【15】Lee P, Garimella S V, Liu D. Investigation of heat transfer in rectangular microchannels[J]. International Journal of Heat and Mass Transfer, 2005, 48(9): 1688-1704.

【16】Wang Chang, Gao Puzhen, Tan Sichao, et al. Effect of aspect ratio on the laminar-to-turbulent transition in rectangular channel[J]. Annals of Nuclear Energy, 2012, 46: 90-96.

【17】卢鹏, 潘艳秋, 俞路, 等. 固体激光微通道冷却器内流动特性的数值模拟[J]. 强激光与粒子束, 2014, 26: 051008.(Lu Peng, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow characteristic in solid-state laser microchannel cooler. High Power Laser and Particle Beams, 2014, 26:051008)

【18】云和明. 细通道单相流动和传热特性的研究[D].济南: 山东大学, 2007: 39-40.(Yun Heming. Study on flow and heat transfer characteristics of single phase in mini-channels. Ji’nan: Shandong University, 2007: 39-40)

引用该论文

Pan Nana,Pan Yanqiu,Yu Lu,Jia Chunyan,Xu Zhi,Liu Wanfa,Sang Fengting. Numerical simulation of flow and heat transfer characteristics in microchannel cooler[J]. High Power Laser and Particle Beams, 2016, 28(2): 021002

潘娜娜,潘艳秋,俞 路,贾春燕,徐 志,刘万发,桑凤亭. 微通道冷却器内流动和传热特性的数值模拟[J]. 强激光与粒子束, 2016, 28(2): 021002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF