首页 > 论文 > 强激光与粒子束 > 28卷 > 3期(pp:33020--1)

用于三维全电磁粒子模拟的电荷守恒共形发射技术

Charge conserving emission technique for three-dimensional conformal particle-in-cell simulations

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

给出了满足电荷守恒的共形发射技术。首先阴极表面由三角网格共形描述,发射带电粒子时,根据电荷和电流线性分配方式和离散高斯定律,带电粒子的初始位置设置在与三角面元处于同一个网格元胞内,离三角面元最近且处于金属内部的网格点上。带电粒子的初始运动由两部分组成:一是由三角面上的法向场推进所产生的运动;二是使发射粒子在阴极面上分布呈随机性而设定的随机运动。运动产生的电流按照电荷守恒定律分配到离散网格中,并且由于粒子的初始位置设置在整网格点上,带电粒子的共形发射不会产生非物理的静电累加。最后通过同轴二极管模型来验证共形发射模型的正确性。

Abstract

The charge conserving emission technique is presented in this paper. Based on the relationship between the charge and current distributions and Gauss law preservation, the emitting surface is triangulated, and the charged particle is initially located at the nearest conductor node to the conformal emission triangle. The motion trajectory of the charged particle is decided by two components: the normal component and the transversal component. The normal component is the displacement under the normal electric field of the emission triangle within one step; the transversal component is a random displacement parallel to the emission triangle, whose step size is constrained by the shape of the emission triangle. Currents generated by the movement of charged particles are distributed to the discrete grid according to the charge conserving law. As the charged particle starts from the conductor node, the conformal emission is free of nonphysical electrostatic accumulation. Finally a cylindrical diode is simulated to validate the technique.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O441.4

DOI:10.11884/hplpb201628.033020

所属栏目:高功率微波

基金项目:国家高技术发展计划项目

收稿日期:2015-09-14

修改稿日期:2015-10-30

网络出版日期:--

作者单位    点击查看

王玥:西北核技术研究所, 西安 710024
陈再高:西北核技术研究所, 西安 710024西安交通大学 电信学院, 西安 710049
王建国:西北核技术研究所, 西安 710024西安交通大学 电信学院, 西安 710049

联系人作者:王玥(wangyue5@nint.ac.cn)

备注:王玥(1978-), 男,博士,从事瞬态电磁场理论、真空电子学器件的理论以及数值模拟工作

【1】High performance computing modernization program[EB/OL]. http://www.hpc.mil

【2】Baker R J, Schamiloglu E. High-power microwave sources and technologies[M]. New York: IEEE Press, 2001.

【3】Benford J, Swegle J. High power microwaves[M]. New York: Taylor and Francis, 2007.

【4】Dawson J M. Particle simulation of plasmas[J]. Reviews of Modern Physics, 1983, 55(2): 403-447.

【5】Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. New York: McGraw-Hill, 1985.

【6】Birdsall C K. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC[J]. IEEE Trans Plasma Science, 1991, 19(2): 65-85.

【7】Birdsall C K, Fuss D. Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation[J]. Journal of Computational Physics, 1997, 135(2): 141-148.

【8】Verboncoeur J P. Particle simulation of plasmas: review and advances[J]. Plasma Physics and Controlled Fusion, 2005, 47: A231-A260.

【9】Pointon T D. Slanted conducting boundaries and field emission of particles in an electromagnetic particle simulation code[J]. Journal of Computational Physics, 1991, 96(1): 143-162.

【10】Stanley H Jr. Numerical modeling of space-charge-limited charged-particle emission on a conformal triangular mesh[J]. Journal of Computational Physics 1996, 125(2):488-497.

【11】Gjonaj E, Lau T, Weiland T. Conformal modeling of space-charge-limited emission from curved boundaries in particle simulations[C]//IEEE Particle Accelerator Conference. 2003, 5: 3563-3565.

【12】Erlangung Z. An emission model for the particle-in-cell method[D]. Darmstadt: Technische Universitat Darmstadt, 2006:123.

【13】Cary J R, Abell D, Amundson J, et al. Petascale self-consistent electromagnetic computations using scalable and accurate algorithms for complex structures[C]//Journal of Physics: Conference Series. 2006, 46(1): 200-204.

【14】Nieter C, Ovtchinnikov S, Smithe D N, et al. Self-consistent simulations of multipacketing in superconducting radio frequencies[C]// IEEE Particle Accelerator Conference. 2007: 769-771.

【15】Smithe D, Stoltz P, Loverich J, et al. Development and application of particle emission algorithms from cut-cell boundaries in the VORPAL EM-FDTD-PIC simulation tool[C]//IEEE Vacuum Electronics Conference. 2008: 217-218.

【16】Nieter C, Cary J R, Werner G R, et al. Application of Dey-Mittra conformal boundary algorithm to 3D electromagnetic modeling[J]. Journal of Computational Physics, 2009, 228(21): 7902-7916.

【17】Verboncoeur J P. Symmetric spline weighting for charge and current density in particle simulation[J]. Journal of Computational Physics, 2001, 174(1): 421-427.

【18】Esirkepov T Zh. Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor[J]. Computer Physics Communications, 2001,135: 144-153.

【19】王玥, 付梅艳, 陈再高, 等.用于全电磁粒子模拟的复杂建模及网格生成技术[J]. 强激光与粒子束, 2011, 23(11): 2994-2998. (Wang Yue, Fu Meiyan, Chen Zaigao, et al. Technique of complex geometry modeling and grid generation for fully electromagnetic particle simulation. High Power Laser and Particle Beams, 2011, 23(11): 2994-2998)

引用该论文

Wang Yue,Chen Zaigao,Wang Jianguo. Charge conserving emission technique for three-dimensional conformal particle-in-cell simulations[J]. High Power Laser and Particle Beams, 2016, 28(3): 033020

王玥,陈再高,王建国. 用于三维全电磁粒子模拟的电荷守恒共形发射技术[J]. 强激光与粒子束, 2016, 28(3): 033020

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF