首页 > 论文 > 光学学报 > 36卷 > 4期(pp:401004--1)

改进的差分光柱像运动激光雷达的湍流廓线反演方法

Improved Retrieval Method of Turbulence Profile from Differential Column Image Motion Light Detection and Ranging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

阐述了差分光柱像运动激光雷达探测大气湍流廓线的基本原理,针对雷达现有Levenberg-Marquardt反演算法对高空湍流反演误差大的问题,提出了带不等式路径约束的反演新模型,并采用惩罚函数法处理该模型,通过增加高空湍流信息量,避免了非物理意义的反演解;同时为了减弱现有算法对初值和先验知识的依赖,进一步提出了基于遗传算法的初值寻优策略,能够将现有算法的初值定位在全局空间内。利用改进算法和现有算法数值仿真了典型的大气湍流廓线,并对合肥地区实测激光雷达数据进行了分析。结果表明,改进算法增强了迭代过程的全局搜索能力,对测量误差有较强的稳健性,能够有效提高反演精度和高空湍流的准确性,同时也加快了收敛速度。

Abstract

The principle of differential column image motion light detection and ranging for acquiring atmospheric turbulence profile is described. Aiming at the large retrieval error in high-altitude turbulence of current Levenberg- Marquardt inversion algorithm, a novel inversion model with inequality path constrained is developed and the penalty function method is used to handle this model, thereby an unphysical solution by adding the information of highaltitude turbulence is avoided. Furthermore, in order to weaken the current algorithm dependence on initial value and priori knowledge, a new optimization strategy based on genetic algorithm is presented to locate initial value of current algorithm in global variable space. Typical atmosphere turbulence profiles are simulated with the modified algorithm and the current algorithm. The measured lidar data in Hefei is also analyzed. Results show that the modified algorithm can enhance the global search capability of iteration process and perform strong robustness against measurement noise, improving the retrieval precision and accurate quantification of high-altitude turbulence effectively. Moreover, the modified algorithm accelerates the convergence.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/aos201636.0401004

所属栏目:大气与海洋光学

基金项目:国家自然科学基金(41405014)

收稿日期:2015-11-13

修改稿日期:2015-12-08

网络出版日期:--

作者单位    点击查看

程知:中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽 合肥 230031中国科学技术大学研究生院科学岛分院, 安徽 合肥 230031
何枫:中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽 合肥 230031
靖旭:中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽 合肥 230031
谭逢富:中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽 合肥 230031
侯再红:中国科学院安徽光学精密机械研究所大气成分与光学重点实验室, 安徽 合肥 230031

联系人作者:程知(cz_ganen108@126.com)

备注:程知(1987—),女,博士研究生,主要从事大气湍流廓线方面的研究。

【1】Voyez J, Robert C, Conan J M, et al.. First on-sky results of the CO-SLIDAR Cn2 profiler[J]. Opt Express, 2014, 22(9): 10948-10967.

【2】Gilles L, Ellerbroek B L. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes[J]. J Opt Soc Am A, 2010, 27(11): A76-A83.

【3】Azucena O, Crest J, Kotadia S, et al.. Adaptive optics wide-field microscopy using direct wavefront sensing[J]. Opt Lett, 2011, 36(6): 825-827.

【4】Raj A A B, Selvi J A V, Durairaj S. Comparison of different models for ground-level atmospheric turbulence strength (Cn2) prediction with a new model according to local weather data for FSO applications[J]. Appl Opt, 2015, 54(4): 802-815.

【5】Wu Xiaojun, Wang Hongxing, Li Bifeng, et al.. Affect analysis of atmospheric turbulence on fading characteristics in free-space optical system over different environments[J]. Chinese J Lasers, 2015, 42(5): 0513001.
吴晓军, 王红星, 李笔锋, 等. 不同传输环境下大气湍流对无线光通信衰落特性影响分析[J]. 中国激光, 2015, 42(5): 0513001.

【6】Kong Yingxiu, Ke Xizheng, Yang Yuan. Influence research of atmospheric turbulence on space coherent optical communications[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080601.
孔英秀, 柯熙政, 杨媛. 大气湍流对空间相干光通信的影响研究[J]. 激光与光电子学进展, 2015, 52(8): 080601.

【7】Qing Chun, Wu Xiaoqing, Li Xuebin, et al.. Estimation of atmospheric optical turbulence profile by WRF model at Gaomeigu[J]. Chinese J Lasers, 2015, 42(9): 0913001.
青春, 吴晓庆, 李学彬, 等. WRF模式估算丽江高美古大气光学湍流廓线[J]. 中国激光, 2015, 42(9): 0913001.

【8】Avila R, Vernin J, Sánchez L J. Atmospheric turbulence and wind profiles monitoring with generalized scidar[J]. Astronomy & Astrophysics, 2001, 369(1): 364-372.

【9】Butterley T, Wilson R W, Sarazin M. Determination of the profile of atmospheric optical turbulence strength from SLODAR data[J]. Mon Not R Astron Soc, 2006, 369(2): 835-845.

【10】Els S G, Sch?ck M, Seguel J, et al.. Study on the precision of the multiaperture scintillation sensor turbulence profiler (MASS) employed in the site testing campaign for the thirty meter telescope[J]. Appl Opt, 2008, 47(14): 2610-2618.

【11】Gimmestad G, Roberts D, Stewart J, et al.. Development of a lidar technique for profiling optical turbulence[J]. Opt Eng, 2012, 51(10): 101713.

【12】Jing X, Hou Z H, Wu Y, et al.. Development of a differential column image motion light detection and ranging for measuring turbulence profiles[J]. Opt Lett, 2013, 38(17): 3445-3447.

【13】Huang Ketao, Wu Yi, Hou Zaihong, et al.. Inversion algorithm and numerical simulation of DCIM lidar measurement turbulence profile [J]. Chinese Journal of Quantum Electronics, 2014, 31(3): 348-354.
黄克涛, 吴毅, 侯再红, 等. DCIM 激光雷达测量湍流廓线反演算法及数值仿真研究[J]. 量子电子学报, 2014, 31(3): 348-354.

【14】K Deb, A Bhattacharya, N Chakraborti, et al.. Simulatd evolution and learning[M]. Heidelberg: Springer, 2010: 623-632.

【15】Luo Xi, Li Xinyang. Investigation on atmospheric optical turbulence profile statistical mode by stochastic parallel gradient descent algorithm [J]. Acta Optica Sinica, 2012, 32(9): 0901003.
罗曦, 李新阳. 随机并行梯度下降算法拟合大气湍流廓线统计模式的研究[J]. 光学学报, 2012, 32(9): 0901003.

【16】Wang Daodang, Wang Fumin, Chen Xixi, et al.. Three-dimensional coordinate measurement with point-diffraction interferometer based on Levenbery-Marquardt algorithm[J]. Acta Optica Sinica, 2014, 34(8): 0812001.
王道档, 王福民, 陈茜茜, 等. 基于Levenbery-Marquardt算法的点衍射三维坐标测量方法[J]. 光学学报, 2014, 34(8): 0812001.

【17】Antczak T. Exactness of penalization for exact minimax penalty function method in nonconvex programming[J]. Appl Math Mech, 2015, 36(4): 541-556.

【18】Tang Yunhai, Wu Quanying, Chen Xiaoyi, et al.. Optimization design of the meridian line of progressive addition lenses based on genetic algorithm[J]. Acta Optica Sinica, 2014, 34(9): 0922005.
唐运海, 吴泉英, 陈晓翌, 等. 基于遗传算法的渐进多焦点镜片子午线优化设计[J]. 光学学报, 2014, 34(9): 0922005.

【19】Hardy J W. Adaptive optics for astronomical telescopes[M]. New York: Oxford University Press, 1998: 84-86.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF