Chinese Optics Letters, 2016, 14 (4): 042302, Published Online: Aug. 6, 2018  

Influence of excitation power on temperature-dependent photoluminescence of phase-separated InGaN quantum wells Download: 984次

Author Affiliations
1 School of Physics, Shandong University, Jinan 250100, China
2 National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
3 Key Laboratory of Functional Crystal Materials and Device (Ministry of Education), Shandong University, Jinan 250100, China
Abstract
Temperature-dependent photoluminescence (PL) of phase-separated InGaN quantum wells is investigated over a broader excitation power range. With increasing excitation power from 0.5 μW to 50 mW, the In-rich quasi-quantum dot (QD)-related PL peak disappears at about 3 mW, while temperature behavior of the InGaN matrix-related PL peak energy (linewidth) gradually evolves from a strong “S-shaped” (“W-shaped”) temperature dependence into a weak “S-shaped” (an approximately “V-shaped”), until becoming an inverted “V-shaped” (a monotonically increasing) temperature dependence. This indicates that, with increasing excitation power, the carrier localization effect is gradually reduced and the QD-related transition is submerged by the significantly enhanced InGaN matrix-related transition, while the carrier thermalization effect gradually increases to become predominant at high excitation powers.

Haiyan Lü, Yuanjie Lü, Qiang Wang, Jianfei Li, Zhihong Feng, Xiangang Xu, Ziwu Ji. Influence of excitation power on temperature-dependent photoluminescence of phase-separated InGaN quantum wells[J]. Chinese Optics Letters, 2016, 14(4): 042302.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!