首页 > 论文 > 光学学报 > 36卷 > 5期(pp:508001--1)

对称型太阳能聚光集热系统吸热器能流分布的运动累加计算方法

Moving Accumulative Computation Method for Flux Distribution of Heat Absorber in Symmetry Concentrating Solar Collector System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于太阳能聚光集热系统的几何对称特性,提出一种运动累加方法来计算吸热器的能流密度分布。采用光线跟踪方法,推导了吸热器表面能流分布的运动累加数学模型,此模型可以将光线跟踪过程转换为旋转运动或平移运动,避免大量求解光线与吸热器曲面的联立方程组。在Visual C++平台编制运动累加程序,计算了典型的碟式和槽式系统配置不同吸热器的能流密度分布,并与文献对比验证了该方法的正确性。结果表明,在碟式—腔式吸热器中,跟踪光线6.10×108根需112 s,在结果符合的情况下可跟踪光线9.648×107根,这样仅需16 s。运动累加方法的计算过程较简单,且具有一定的计算效率,可以为对称特征的聚光集热系统参数协同优化提供一定参考。

Abstract

Based on the characteristics of geometric symmetry of the concentrating solar collector system, a moving accumulative method is put forward, which is used to compute the solar flux distribution of the absorber. Using the ray tracing method to deduce the moving accumulative mathematical model of the absorber flux distribution, the model can effectively convert the ray tracing process into rotary or rectilinear motion. Therefore, the numerous equations of rays and absorber calculation are avoided. The moving accumulative programs are compiled and the absorber solar flux distributions of the dish system and parabolic trough system are calculated by Visual C++ software. Then the results are compared with references, which validate the correctness of the moving accumulative mathematical model. The result shows that, in dish system with cavity receiver, calculation of 6.10×108 rays need 112 s, but calculation of 9.648×107 rays just need 16 s and calculated results are basically consistent. The moving accumulative method calculation process is relatively simple and the computational efficiency is improved, which can provide reference to collaborative optimization for the symmetry solar concentration and collector system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TK513.1

DOI:10.3788/aos201636.0508001

所属栏目:几何光学

基金项目:国家自然科学基金(51275166,51576061)、湖南科技大学研究生创新基金项目(S140018)

收稿日期:2015-12-28

修改稿日期:2016-01-22

网络出版日期:--

作者单位    点击查看

颜健:湖南科技大学机械设备健康维护湖南省重点实验室, 湖南 湘潭 411201
彭佑多:湖南科技大学机械设备健康维护湖南省重点实验室, 湖南 湘潭 411201
程自然:湖南科技大学机械设备健康维护湖南省重点实验室, 湖南 湘潭 411201
余佳焕:湖南科技大学机械设备健康维护湖南省重点实验室, 湖南 湘潭 411201

联系人作者:颜健(yanjiancaoyue@163.com)

备注:颜健(1988-),男,博士研究生,主要从事太阳能光热发电系统光机热多场耦合协同优化方面的研究。

【1】J C L Chien, N Lior. Concentrating solar thermal power as a viable alternative in China′s electricity supply[J]. Energy Policy, 2011, 39(12): 7622-7636.

【2】D Barlev, R Vidu, P Stroeve. Innovation in concentrated solar power[J]. Solar Energy Materials & Solar Cells, 2011, 95(10): 2703-2725.

【3】D A Baharoon, H A Rahman, W Z W Omar, et al.. Historical development of concentrating solar power technologies to generate clean electricity efficiently-A review[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 996-1027.

【4】Z D Cheng, Y L He, F Q Cui. A new modelling method and unified code with MCRT for concentrating solar collectors and its applications[J]. Applied Energy, 2013, 101: 686-698.

【5】Cheng Zedong, He Yaling, Cui Fuqing. Studies on concentrating solar collectors with a new modelling method and unified MCRT code[J]. Chinese Science Bulletin, 2012, 57(22): 2127-2136.
程泽东, 何雅玲, 崔福庆. 聚光集热系统统一MCRT建模与聚光特性[J]. 科学通报, 2012, 57(22): 2127-2136.

【6】S M Jeter. The distribution of concentrated solar radiation in paraboloidal collectors[J]. Journal of Solar Energy Engineering, 1986, 108(3): 219-225.

【7】S M Jeter. Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation[J]. Solar Energy, 1986, 37(5): 335-345.

【8】Zhao Jinlong, Li Lin, Cui Zhengjun, et al.. Calculation of flux density distribution on focal plane in linear Fresnel reflector[J]. Acta Optica Sinica, 2012, 32(12): 1208001.
赵金龙, 李林, 崔正军, 等. 线性菲涅耳反射聚光器聚焦光斑能流密度分布的计算[J]. 光学学报, 2012, 32(12): 1208001.

【9】Liu Ying, Dai Jingmin, Lang Zhiguo, et al.. Finite-element analysis for flux distribution on focal plane of rotating parabolic concentrators[J]. Acta Optica Sinica, 2007, 27(10): 1775-1778.
刘颖, 戴景民, 郎治国, 等. 旋转抛物面聚光器焦面能流分布的有限元分析[J]. 光学学报, 2007, 27(10): 1775-1778.

【10】Yan Jian, Peng Youduo, Yu Jiahuan, et al.. Research on thermal-structural-optical multi-field coupling modeling and concentrating performance predication of solar dish system[J]. Journal of Mechanical Engineering, 2015, 51(14): 138-151.
颜健, 彭佑多, 余佳焕, 等. 碟式太阳能光热系统光-机-热多场耦合建模及其聚光性能预测应用[J]. 机械工程学报, 2015, 51(14): 138-151.

【11】Xu Chengmu, Li Ming, Ji Xu, et al.. Frequency statistics analysis for energy-flux-density distribution on focal plane of parabolic trough solar concentrators[J]. Acta Optica Sinica, 2013, 33(4): 0408001.
许成木, 李明, 季旭, 等. 槽式太阳能聚光器焦面能流密度分布的频数统计分析[J]. 光学学报, 2013, 33(4): 0408001.

【12】Y Shuai, X L Xia, H P Tan. Radiation performance of dish solar concentrator/cavity receiver systems[J]. Solar Energy, 2008, 82(1): 13-21.

【13】Y Qiu, Y L He, Z D Cheng, et al.. Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods[J]. Applied Energy, 2015, 146: 162-173.

【14】Z D Cheng, Y L He, F Q Cui, et al.. Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method[J]. Solar Energy, 2012, 86(6): 1770-1784.

【15】Peng Youduo, Yan Jian, Yi Chenfei, et al.. Frame bearing capacity mechanism of 38 kW solar dish string power system[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2015, 30(1): 29-35.
彭佑多, 颜健, 易陈斐, 等. 38 kW级碟式光热发电系统机架结构的承载性能[J]. 湖南科技大学学报(自然科学版), 2015, 30(1): 29-35.

【16】K Wang, H Wu, D Wang, et al.. Experimental study on a coiled tube solar receiver under variable solar radiation condition[J]. Solar Energy, 2015, 122: 1080-1090.

【17】C Daniele, S Fabio. Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants[J]. Energy, 2015, 81: 526-536.

【18】M J Montes, C Rubbia, R Abbas, et al.. A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power[J]. Energy, 2014, 73: 192-203.

【19】M M Elsayed, K A Fathalah, O M Al-Rabghi. Measurements of solar flux density distribution on a plane receiver due to a flat heliostat[J]. Solar Energy, 1995, 54(6): 403-411.

【20】P L Leary, J D Hankins. User′s guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants[R]. Sandia Labs, Livermore, CA (USA), 1979.

引用该论文

Yan Jian,Peng Youduo,Cheng Ziran,Yu Jiahuan. Moving Accumulative Computation Method for Flux Distribution of Heat Absorber in Symmetry Concentrating Solar Collector System[J]. Acta Optica Sinica, 2016, 36(5): 0508001

颜健,彭佑多,程自然,余佳焕. 对称型太阳能聚光集热系统吸热器能流分布的运动累加计算方法[J]. 光学学报, 2016, 36(5): 0508001

被引情况

【1】颜健,彭佑多,程自然,彭黎,谭新华. 碟式聚光器镜面单元聚焦光斑与位姿误差的关联特性. 光学学报, 2016, 36(11): 1122003--1

【2】袁昱纬,全吉成,吴晨,刘宇,王宏伟. 基于八叉树自适应体归并的光线跟踪加速结构. 光学学报, 2017, 37(1): 120001--1

【3】闫素英,常 征,王 峰,田 瑞. 积尘对槽式太阳能聚光器焦面能流密度分布的影响及聚光优化. 光学学报, 2017, 37(7): 722002--1

【4】王志敏,田瑞,齐井超,李培涛,卫强. 倒梯形腔体接收器的结构设计及光学性能. 光学学报, 2017, 37(12): 1222003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF