首页 > 论文 > 光学学报 > 36卷 > 5期(pp:519002--1)

利用光强分布设计多波长频率转换器件

Design of Multiple-Wavelength Frequency Conversion Device Based on Intensity Distribution

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对获得多波长同时产生的可调控的频率转换器件进行了研究。通过分析非线性晶体中耦合光强随传播距离的变化,提出了一种基于晶体中光强分布获得非线性结构的方法。针对和频过程,利用MATLAB软件进行仿真,设计出了6个和频过程同时发生的非周期结构。为灵活调控各个非线性过程的输出强度,得到任意形状的目标功率谱,提出在设计过程中引入权重系数。对和频及倍频产生的研究表明:获得的非线性结构不仅实现了多波长的同时输出,而且可以任意调节输出光功率谱。该设计方法速度快、效率高,可以为实际制作非线性光学器件提供理论指导。

Abstract

Controllable frequency conversion devices, with the generation of multiple-wavelength, are designed. We analyze the variation of light intensity in nonlinear crystal with propagation distance. A method is proposed to design nonlinear structure based on the distribution of light intensity. MATLAB software is used to simulate sum frequency generation. An aperiodic structure is obtained to achieve simultaneous six sum-frequency-generations. The weighting coefficient is introduced to flexibly modify output intensity and obtain objective spectrum with arbitrary shape. By analyzing sum-frequency-generation and second-harmonic-generation, the obtained structure can not only generate multiple-wavelength, but also arbitrarily adjust the optical power of output wavelength. Our proposed method has advantages of fast speed and high efficiency. It can provide a good guidance for the fabrication of nonlinear optical devices.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/aos201636.0519002

所属栏目:非线性光学

基金项目:国家自然科学基金(11104200)

收稿日期:2015-12-07

修改稿日期:2016-01-22

网络出版日期:--

作者单位    点击查看

任坤:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
刘亚丽:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
任晓斌:天津科技大学理学院, 天津 300222
范景洋:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072

联系人作者:任坤(renkun@tju.edu.cn)

备注:任坤(1976-),女,博士,副教授,主要从事光子晶体和非线性光学方面的研究。

【1】Meenakshisundaram N, Pandiyan K, Kashyap R. A systematic approach for designing quasi-periodic optical superlattices using the Hadamard matrix[J]. Journal of Optics, 2014, 16(1): 015204.

【2】Tehranchi A, Morandotti R, Kashyap R. Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings[J]. Optics Express, 2011, 19(23): 22528-22534.

【3】Gui Shixin, Chang Jianhua, Yan Na, et al.. A compact and highly efficient intracavity frequency-doubled green laser based on periodically poled lithium niobate[J]. Chinese J Lasers, 2015, 42(11): 1102002.
桂诗信, 常建华, 严娜, 等. 一种基于铌酸锂晶体的高效紧凑腔内倍频绿光激光器[J]. 中国激光, 2015, 42(11): 1102002.

【4】Sheng Y, Ma D, Ren M, et al.. Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal[J]. Applied Physics Letters, 2011, 99(3): 031108.

【5】Liao J, He J L, Liu H, et al.. Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3[J]. Applied Physics Letters, 2003, 82(19): 3159-3161.

【6】Ma B Q, Ren M L, Ma D L, et al.. Multiple second-harmonic waves in a nonlinear photonic crystal with fractal structure[J]. Applied Physics B, 2013, 111(2): 183-187.

【7】Mizuuchi K, Yamamoto K. Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts[J]. Optics Letters, 1998, 23(24): 1880-1882.

【8】Li Zhi, Tan Huiming, Tian Yubing, et al.. All-solid-state multi-wavelength yellow laser intra-cavity SHG/SFG[J]. Acta Optica Sinica, 2014, 34(2): 0214001.
李智, 檀慧明, 田玉冰, 等. 全固态腔内SHG/SFG多波长黄光激光器[J]. 光学学报, 2014, 34 (2): 0214001.

【9】Ren K, Ren X, Liu Y, et al.. An efficient method for analyzing second harmonic generation with the consideration of pump depletion[J]. Journal of Modern Optics, 2015, 62(19): 1577-1582.

【10】Zhao Gang, Jiang Xudong, Lv Xinjie, et al.. Four-wavelength near and mid-infrared optical parameter oscillator based on superlattice[J]. Chinese J Lasers, 2015, 42(5): 0502004.
赵刚, 蒋旭东, 吕新杰, 等. 基于光学超晶格的四波长近-中红外光参量振荡器[J]. 中国激光, 2015, 42(5): 0502004.

【11】Ren F F, Ye J, Lu H, et al.. Spectrum broadening of high-efficiency second harmonic generation in cascaded photonic crystal microcavities[J]. Optics Express, 2013, 21(1): 756-763.

【12】Yang J, Hu X P, Xu P, et al.. Chirped-quasi-periodic structure for quasi-phase-matching[J]. Optics Express, 2010, 18(14): 14717-14723.

【13】Liu H, Zhu S N, Zhu Y Y, et al.. Multiple-wavelength second-harmonic generation in aperiodic optical superlattices[J]. Applied Physics Letters, 2002, 81(18): 3326-3328.

【14】Chen X, Wu F, Zeng X, et al.. Multiple quasi-phase-matching in a nonperiodic domain-inverted optical superlattice[J]. Physical Review A, 2004, 69(1): 013818.

【15】Lu M, Chen X F, Chen Y P, et al.. Algorithm to design aperiodic optical superlattice for multiple quasi-phase matching[J]. Applied optics, 2007, 46(19): 4138-4143.

【16】Zhao L M, Zhou Y S, Zhao J. Tunable output of second harmonic generations in photonic quantum well structures made of nonlinear material[J]. International Journal of Modern Physics B, 2012, 26(31): 3847-3856.

【17】Chen B Q, Ren M L, Liu R J, et al.. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals[J]. Light: Science & Applications, 2014, 3(7): e189.

【18】Chen B Q, Zhang C, Hu C Y, et al.. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal[J]. Physical Review Letters, 2015, 115(8): 083902.

【19】Fejer M M, Magel G A, Jundt D H, et al.. Quasi-phase-matched second harmonic generation: tuning and tolerances[J]. IEEE Journal of Quantum Electronics, 1992, 28(11): 2631-2654.

【20】Gu B Y, Zhang Y, Dong B Z. Investigations of harmonic generations in aperiodic optical superlattices[J]. Journal of Applied physics, 2000, 87(11): 7629-7637.

引用该论文

Ren Kun,Liu Yali,Ren Xiaobin,Fan Jingyang. Design of Multiple-Wavelength Frequency Conversion Device Based on Intensity Distribution[J]. Acta Optica Sinica, 2016, 36(5): 0519002

任坤,刘亚丽,任晓斌,范景洋. 利用光强分布设计多波长频率转换器件[J]. 光学学报, 2016, 36(5): 0519002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF