首页 > 论文 > 中国激光 > 43卷 > 5期(pp:502002--1)

LD抽运主振荡功率放大结构4.1 kW全光纤激光器

Laser Diode Pumped 4.1 kW All-Fiber Laser with Master Oscillator Power Amplification Configuration

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用半导体激光器(LD)抽运大模场增益光纤实现了输出功率大于4 kW的主振荡功率放大结构全光纤激光器。实验研究了增益光纤纤芯直径和抽运波长不同情况下激光器的受激拉曼散射(SRS)和横向模式不稳定(TMI)特性。为了抑制SRS,选择纤芯为30 μm的大模场掺镱光纤作为增益介质;为了抑制光纤放大器中的TMI,利用增益光纤吸收系数较低波段对应的915 nm LD作为抽运源,将增益光纤弯曲半径降低到10 cm以提高高阶模的损耗。在种子功率为100 W、最高注入抽运功率为5.3 kW时获得了4.1 kW的功率输出,光束质量M2为2.2,输出激光中无SRS和TMI现象。

Abstract

A laser diode (LD) pumped all-fiber laser with master oscillator power amplification configuration is demonstrated, of which output power is more than 4 kW. The stimulated Raman scattering (SRS) and transverse mode instability (TMI) charateristics of lasers are experimentally studied under different core-diameter gain fibers and different pump wavelengths. In order to mitigate SRS, a large mode area Yb3+ doped fiber with core diameter of 30 μm is selected as gain media. In order to suppress TMI, LD with center wavelength of 915 nm is used as pump source, so the absorption coefficient of the gain fiber is lower at 915 nm, and the bending radius of the gain fiber is reduced to 10 cm to increase the loss of the higher modes. When the seed power is 100 W, the highest pump power is 5.3 kW, the laser power of 4.1 kW is achieved, and the beam quality M2 is 2.2. There are no SRS and TMI effects observed in the output laser.

投稿润色
补充资料

中图分类号:TN248

DOI:10.3788/cjl201643.0502002

所属栏目:激光物理

基金项目:国家自然科学基金(61505260)

收稿日期:2016-01-22

修改稿日期:2016-02-04

网络出版日期:--

作者单位    点击查看

王小林:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
张汉伟:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
陶汝茂:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
粟荣涛:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
周朴:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
许晓军:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073

联系人作者:王小林(chinaphotonics@163.com)

备注:王小林(1985-),男,博士,副研究员,主要从事光纤激光器及相干合成方面研究。

【1】Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: Current status and future perspectives[J]. J Opt Soc Am B, 2010, 27(11): B63-B92.

【2】Galvanauskas A. High power fiber lasers[J]. Optics & Photonics News, 2004, 15(7): 42-47.

【3】Zervas M N, Codemard C A. High power fiber lasers: A review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1-23.

【4】Zervas M N. High power ytterbium-doped fiber lasers-fundamentals and applications[J]. International Journal of Modern Physics B, 2014, 28(12): 1442009.

【5】Wang Xiaolin, Zhang Hanwei, Yu Hailong, et al.. 3.15 kW all-fiber single-mode laser[J]. Chinese J Lasers, 2015, 42(2): 0219003.
王小林, 张汉伟, 于海龙, 等. 3.15 kW全光纤单模激光器[J]. 中国激光, 2015, 42(2): 0219003.

【6】Dai Shoujun, He Bing, Zhou Jun, et al.. 1.5 kW near single-mode all-fiber laser[J]. Chinese J Lasers, 2013, 40(7): 0702001.
代守军, 何兵, 周军, 等. 1.5 kW近单模全光纤激光器[J]. 中国激光, 2013, 40(7): 0702001.

【7】IPG Photonics Inc. IPG photonics successfully tests world′s first 10 kilowatt single-mode production laser[EB/OL]. [2015-12-25] http://www.laserfocusworld.com/articles/oiq/2009/06/ipg-photonics-successfully.html.

【8】Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.

【9】Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.

【10】Eidam T, Wirth C, Jauregui C, et al.. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.

【11】Hansen K R, Alkeskjold T T, Broeng J, et al.. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Optics Letters, 2012, 37(12): 2382-2384.

【12】Dong L. Stimulated thermal Rayleigh scattering in optical fibers[J]. Optics Express, 2013, 21(3): 2642-2656.

【13】Jauregui C, Limpert J, Tunnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.

【14】Tao Rumao. Study of thermal-induced modal instabilities in high power narrow-linewidth fiber amplifiers with near diffraction-limited beam quality[D]. Changsha: National University of Defense Technology, 2015.
陶汝茂. 高功率窄线宽近衍射极限光纤激光放大器热致模式不稳定研究[D]. 长沙: 国防科学技术大学, 2015.

【15】Tao Rumao, Zhou Pu, Xiao Hu, et al.. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020001.
陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51(2): 020001.

【16】Tao Rumao, Wang Xiaolin, Xiao Hu, et al.. Theoretical study of the threshold power of mode instability in high-power fiber amplifier[J]. Acta Optica Sinica, 2014, 34(1): 0114002.
陶汝茂, 王小林, 肖虎, 等. 高功率光纤放大器中模式不稳定阈值功率的理论研究[J]. 光学学报, 2014, 34(1): 0114002.

【17】Wang Xiaolin, Tao Rumao, Xiao Hu, et al.. Experimental studies of mode instability and thermal effects in all-fiber amplifier[C]. Conference on Advance Solid-State Laser, 2013, JTh2A: JTh2A.44.

【18】Tao Rumao, Ma Pengfei, Wang Xiaolin, et al.. 1.4 kW all-fiber narrow-linewidth polarization-maintained fiber amplifier[C]. SPIE, 2014, 9255: 92550B.

【19】Tao Rumao, Ma Pengfei, Wang Xiaolin, et al.. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 2015, 12(8): 085101.

【20】Tao Rumao, Ma Pengfei, Wang Xiaolin, et al.. Experimental study on mode instabilities in all-fiberized high-power fiber amplifiers[J]. Chin Opt Lett, 2014, 8(s2): s20603.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF