首页 > 论文 > 中国激光 > 43卷 > 5期(pp:503005--1)

稳态磁场辅助激光熔注制备梯度涂层

Graded Coating Produced by Laser Melt Injection Under Steady Magnetic Field

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用稳态磁场辅助激光熔注,在316L不锈钢基体上成功制备了碳化钨(WC)颗粒分布可调的WC/316L金属基梯度复合材料涂层。讨论了激光熔注时稳态磁场对复合材料涂层中硬质颗粒的分布和组织的影响。研究结果表明,稳态磁场可以抑制熔池流动,降低颗粒在熔池中受到的拖曳力,且随着磁场强度的增大,WC颗粒集中分布在复合材料表层的趋势增大;稳态磁场未改变复合材料层表面的物相种类,但表面的W相含量明显增多,且可使复合材料层表面的共晶组织数量增多、尺寸变大。

Abstract

The WC/316L metal-matrix gradient coating was prepared by laser melt injection under a steady magnetic field. The influence of the steady magnetic field on the distribution of hard particles and the microstructure in the composite layer is discussed. The results show that the steady magnetic field can suppress the flow of the molten pool and reduce the drag force on particles in the molten pool. With the increase of the magnetic flux density, the volume rate of WC particles in the upper part of the LMI layer increases. The phase type is preserved no matter whether the steady magnetic field is added or not. However, the content of W-phase significantly increases. The size of the eutectic structure becomes larger and the quantity does as well.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG148;TN249

DOI:10.3788/cjl201643.0503005

所属栏目:激光制造

基金项目:国家自然科学基金(51475429)、浙江省自然科学基金青年基金(LQ13E050012)

收稿日期:2015-10-09

修改稿日期:2016-01-25

网络出版日期:--

作者单位    点击查看

宋诗英:浙江工业大学激光先进制造研究院, 浙江 杭州 310014浙江省高端激光制造装备协同创新中心, 浙江 杭州 310014
王梁:浙江工业大学激光先进制造研究院, 浙江 杭州 310014浙江省高端激光制造装备协同创新中心, 浙江 杭州 310014
胡勇:浙江工业大学激光先进制造研究院, 浙江 杭州 310014浙江省高端激光制造装备协同创新中心, 浙江 杭州 310014
姚建华:浙江工业大学激光先进制造研究院, 浙江 杭州 310014浙江省高端激光制造装备协同创新中心, 浙江 杭州 310014

联系人作者:宋诗英(1054421239@qq.com)

备注:宋诗英(1987-),女,硕士研究生,主要从事激光加工技术方面的研究。

【1】Gu D D, Shen Y F. Microstructures and properties of direct laser sintered tungsten carbide (WC) particle reinforced Cu matrix composites with Re-Si-Fe addition: A comparative study[J]. Journal of Materials Research, 2009, 24(11): 3397-3406.

【2】Liu Haiqing, Liu Xiubo, Meng Xiangjun, et al.. Study on γ-NiCrAlTi/TiC+TiWC2/CrS +Ti2CS high-temperature self-lubricating wear resistant composite coating on Ti-6Al-4V by laser cladding[J]. Chinese J Lasers, 2014, 41(3): 0303005.
刘海青, 刘秀波, 孟祥军, 等. Ti-6Al-4V合金激光熔覆γ-NiCrAlTi/TiC+TiWC2/CrS+ Ti2CS高温自润滑耐磨复合涂层研究[J]. 中国激光, 2014, 41(3): 0303005.

【3】Li Jianing, Gong Shuili, Wang Xichang, et al.. Physical and surface performance of laser clad Ni based coating on a TA15-2 alloy[J]. Chinese J Lasers, 2013, 40(11): 1103008.
李嘉宁, 巩水利, 王西昌, 等. TA15-2合金表面激光熔覆Ni基涂层物理与表面性能[J]. 中国激光, 2013, 40(11): 1103008.

【4】Zhang Weiping, Lu Donghua, Yu Juanjuan, et al.. Application of zirconia toughening mechanism on laser cladding[J]. Chinese J Lasers, 2014, 41(11): 1103008.
张维平, 路董华, 余娟娟, 等. 氧化锆增韧机制在激光熔覆技术中的应用[J]. 中国激光, 2014, 41(11): 1103008.

【5】Yuan Qinlu, Hu Rui, Li Jinshan, et al.. Development of gradient composite material preparation technology[J]. Ordnance Material Science and Engineering, 2003, 26(6): 66-99.
袁秦鲁, 胡锐, 李金山,等. 梯度复合材料制备技术研究进展[J]. 兵器材料科学与工程, 2003, 26(6): 66-99.

【6】Ayers J D, Tucker T R. Particulate-TiC-hardened steel surfaces by laser melt injection[J]. Thin Solid Films, 1980, 73(1): 201-207.

【7】Riabkina-Fishman M, Rabkin E, Levin P, et al.. Laser produced functionally graded tungsten carbide coatings on M2 high-speed tool steel[J]. Materials Science and Engineering A, 2001, 302(1): 106-114.

【8】Rong Lei, Huang Jian, Li Zhuguo, et al.. Microstructure and property of laser cladding Ni-based alloy coating reinforced by WC particles[J]. China Surface Engineering, 2010, 23(6): 40-44.
戎磊, 黄坚, 李铸国, 等. 激光熔覆WC颗粒增强Ni基合金涂层的组织与性能[J]. 中国表面工程, 2010, 23(6): 40-44.

【9】Ma Guangyi ,Wang Jiangtian, Niu Fangyong, et al.. Influence of powder distribution on the Al2O3 thin-wall ceramic formed by laser engineered net shaping[J]. Chinese J Lasers, 2015, 42(1): 0103006.
马广义, 王江田, 牛方勇, 等. 粉末分布对激光近净成形Al2O3陶瓷薄壁件表面形貌的影响[J]. 中国激光, 2015, 42(1): 0103006.

【10】Li Zhihong, Yang Lijing, Zhang Qunli, et al.. Comparative research of Stellite 6 coatings prepared by supersonic laser deposition and laser cladding[J]. Chinese J Lasers, 2015, 42(5): 0503008.
李址宏, 杨理京, 张群莉, 等. 超音速激光沉积与激光熔覆Stellite 6涂层的对比研究[J]. 中国激光, 2015, 42(5): 0503008.

【11】Han Jiecai, Dong Shiyun, Zhang Xinghong, et al.. Present status of the manufacture processing for metal/ceramic graded coatings[J]. Journal of Materials Engineering, 1998(12): 39-43.
韩杰才, 董世运, 张幸红, 等. 金属/陶瓷梯度涂层工艺现状[J]. 工程材料, 1998(12): 39-43.

【12】Wang Zi. Simulation investigation of laser-melt injection of SiC-316L hybrid particles on AZ31B magnesium alloy surface[D]. Nanchang: East China Jiaotong University, 2013: 1-10.
王孜. AZ31B镁合金表面激光熔注SiC-316L混合粒子模拟研究[D]. 南昌: 华东交通大学, 2013: 1-10.

【13】Pei Y T, Ocelik V, Hosson De, et al.. SiCp/Ti6Al4V functionally graded materials produced by laser melt injection[J]. Acta Materialia, 2002, 50(8): 2035-2051.

【14】Chen Y B, Liu D J, Li L Q, et al.. WCp/Ti-6Al-4V graded metal matrix composites layer produced by laser melt injection[J]. Surface and Coatings Technology, 2008, 202(19): 4780-4787.

【15】Volppa J, Dietza T, Vollertsen F. Particle property impact on its distribution during laser deep alloying processes[J]. Physics Procedia, 2014, 56: 1094-1011.

【16】Vreeling J A, Ocelik V, Hosson De. Ti-6Al-4V strengthened by laser melt injection of WCp particles[J]. Acta Materialia, 2002, 50(19): 4913-4924.

【17】Zhang Xiangjun. Microstructures and wear resistance of coatings produced by laser melt injecting WC on Q235 steel surface[D]. Harbin: Harbin Institute of Technology, 2007: 15-21.
张相军. Q235钢表面激光熔注WC涂层的组织结构与耐磨性能[D]. 哈尔滨: 哈尔滨工业大学, 2007: 15-21.

【18】Bachmann M, Avilov V, Gumenyuk A, et al.. About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminum parts[J]. International Journal of Heat and Mass Transfer, 2013, 60: 309-321.

【19】Bachmann M, Avilov V, Gumenyuk A, et al.. Numerical simulation of full-penetration laser beam welding of thick aluminum plates with inductive support[J]. Journal of Physics D: Applied Physics, 2012, 45(3): 035201.

【20】Hu Yong, Chen Zhijun, Yao Jianhua, et al.. Numerical simulation of the static magnetic field regulation of the laser molten pool heat transfer and flow behavior[J]. Applied Laser, 2014, 34(6): 508-512.
胡勇, 陈智君, 姚建华, 等. 静态磁场对激光熔池传热及流动行为的调控作用数值模拟[J]. 应用激光, 2014, 34(6): 508-512.

【21】Cai Yuan. Simulation investigation of hybrid laser-TIG melt injection of ceramic particles on Al surface[D]. Harbin: Harbin Institute of Technology, 2010: 12-42.
才源. Al合金表面激光-TIG复合熔注陶瓷颗粒的模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 12-42.

【22】Wang L, Yao J H, Hu Y, et al.. Suppression effect of a steady magnetic field on molten pool during laser remelting[J]. Applied Surface Science, 2015, 351: 794-802.

【23】Wang Liang, Hu Yong, Song Shiying et al.. Suppression effect of a steady magnetic field on surface undulation during laser remelting[J]. Chinese J Lasers, 2015, 42(11): 1103005.
王梁, 胡勇, 宋诗英, 等. 稳态磁场辅助对激光熔凝层表面波纹的抑制作用研究[J]. 中国激光, 2015, 42(11): 1103005.

【24】Che Defu, Li Huixiong. Multiphase flow and its application[M]. Xi′an: Xi′ an Jiaotong University Press, 2007: 80-89.
车得福, 李会雄. 多相流及其应用[M]. 西安:西安交通大学出版社, 2007: 80-89.

【25】Li Fuquan, Chen Yanbin, Li Liqun. Microstructures and wear resistance of coatings produced by laser melt injecting WC on Q235 steel surface[J]. Transactions of the China Welding Institution, 2010, 31(4): 28-33.
李福泉, 陈彦宾, 李俐群. Q235钢表面激光熔注WC涂层的微观组织及耐磨性[J]. 焊接学报, 2010, 31(4): 28-33.

【26】Hu Hanqi. Metal solidification principle[M]. Beijing: China Machine Press, 2000: 117-135.
胡汉起. 金属凝固原理[M]. 北京: 机械工业出版社, 2000: 117-135.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF