首页 > 论文 > 中国激光 > 43卷 > 6期(pp:602010--1)

Q345钢激光焊与气体保护焊的焊接变形与残余应力对比

Comparison of Welding Deformation and Residual Stress in Q345 Steel Thin-Plate Joints Induced by Laser Beam Welding and Gas Metal Arc Welding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

分别采用气体保护焊(GMAW)和激光焊(LBW)焊接板厚为2.8 mm的Q345低合金高强钢对接接头,并测量了对接接头的面外变形。基于Abaqus软件平台,开发了同时考虑材料非线性与几何非线性的热-弹-塑性有限元算法。利用开发的算法计算了GMAW和LBW两种焊接方法的焊接温度场、焊接变形和残余应力。模拟温度场时,采用等密度椭球热源模拟GMAW的热输入,分别采用高斯分布锥形体热源、由等密度半椭球热源与锥形体热源组成的复合热源模拟LBW的热输入。数值模拟结果和试验结果表明,焊接2.8 mm厚的Q345钢板对接接头时,LBW产生的面外焊接变形明显小于GMAW;LBW在焊缝附近产生的纵向高拉伸应力区域范围明显小于GMAW,且两者的纵向与横向残余应力分布形态也有较大差异。此外,模拟激光焊时,虽然高斯分布锥形体热源与复合热源模型在板厚方向的热流密度分布不同,但两者产生的焊接变形差异很小,焊接残余应力分布也基本一致。数值模拟结果对两种激光热源模型并不十分敏感。

Abstract

Gas metal arc welding (GMAW) and laser beam welding (LBW) were used to weld 2.8-mm-thick low-alloy high-strength Q345 steel butt joints. The out-of-plane deformation in the welded joints was measured experimentally. Meanwhile, based on the Abaqus software, a thermal-elastic-plastic property-based finite element method considering both material and geometrical nonlinearity is developed to calculate the welding temperature field, welding deformation and residual stress in the LBW and GMAW processes. In the simulation process of temperature field, an ellipsoid volumetric heat source model with uniform density flux was used to simulate the heat input induced by the GMAW process, while a conical heat source model with Gaussian distribution and a combined source model consisting of half ellipsoid volumetric heat source and conical heat source were used to model the heat input induced by the LBW process. The simulated and experimental results show that the out-of-plane deformation induced by the GMAW process is far larger than that produced by LBW. In addition, the area with high longitudinal tensile stress in the LBW joint is much smaller than that in the GMAW joint. Both longitudinal and transverse residual stress distributions in the LBW joint are notably different from those in the GMAW joint. In the simulation of LBW, welding deformation and residual stress distribution in the conical heat source model with Gaussian distribution and in the combined heat source model are similar, although the heat flux distribution in the thickness direction is different. The simulation results are not sensitive to the used heat source models.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG404

DOI:10.3788/cjl201643.0602010

所属栏目:激光制造

收稿日期:2016-01-26

修改稿日期:2016-03-08

网络出版日期:--

作者单位    点击查看

毛志涛:重庆大学材料科学与工程学院,重庆 400045
蒲晓薇:重庆大学材料科学与工程学院,重庆 400045
汪维登:重庆大学材料科学与工程学院,重庆 400045
叶延洪:重庆大学材料科学与工程学院,重庆 400045
邓德安:重庆大学材料科学与工程学院,重庆 400045

联系人作者:毛志涛(maozt1010@outlook.com)

备注:毛志涛(1991-),男,硕士研究生,主要从事焊接数值模拟和金属材料焊接等方面的研究。

【1】Ye Yanhong, He Jing, Cai Jianpeng, et al.. Welding deformations of 6061-T651 Al alloy thin-plate joints[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(10): 2435-2442.
叶延洪, 何静, 蔡建鹏, 等. 6061-T651 铝合金薄板接头的焊接变形[J]. 中国有色金属学报, 2014, 24(10): 2435-2442.

【2】Liu Guocheng, Tian Jieping, Shi Yusheng, et al.. Review of welding technologies for automotive steel sheets[J]. Laser & Optoelectronics Progress, 2015, 52(1): 010004.
刘国承, 田杰平, 史玉升, 等. 汽车用钢焊接技术研究进展[J]. 激光与光电子学进展, 2015, 52(1): 010004.

【3】方洪渊. 焊接结构学[M]. 北京: 机械工业出版社, 2013: 79-99.

【4】Deng D A, Murakawa H, Liang W. Numerical simulation of welding distortion in large structures[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(45-48): 4613-4627.

【5】Liu C, Zhang J X. Numerical simulation of transient welding angular distortion with external restraints[J]. Science and Technology of Welding and Joining, 2009, 14(1): 26-31.

【6】Schenk T, Richardson I M, Kraska M, et al.. A study on the influence of clamping on welding distortion[J]. Computational Materials Science, 2009, 45(4): 999-1005.

【7】Olsen F O. Hybrid laser-arc welding[M]. Cambridge: Wood-Head Publishing Limited, 2009: 15-25.

【8】Gao X L, Zhang L J, Liu J, et al.. A comparative study of pulsed NdYAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate[J]. Materials Science and Engineering A, 2013, 559: 14-21.

【9】Fang X Y, Zhang J X. Effect of underfill defects on distortion and tensile properties of Ti-2Al-1.5Mn welded joint by pulsed laser beam welding[J]. International Journal of Advanced Manufacturing Technology, 2014, 74(5-8): 699-705.

【10】Wu Chuansong. Welding thermal processes and weld pool behaviors[M]. Beijing: China Machine Press, 2007.
武传松. 焊接热过程与熔池形态[M]. 北京: 机械工业出版社, 2007.

【11】Ghazanfari H, Naderi M, Iranmanesh M, et al.. A comparative study of the microstructure and mechanical properties of HTLA steel welds obtained by the tungsten arc welding and resistance spot welding[J]. Materials Science and Engineering A, 2012, 534: 90-100.

【12】Pang Shengyong, Chen Liliang, Yin Yajun, et al.. Simulations of transient keyhole and dynamic melt pool behaviors during laser welding[J]. Transactions of the China Welding Institution, 2010, 31(2): 71-74.
庞盛永, 陈立亮, 殷亚军, 等. 激光焊接瞬态小孔与运动熔池行为模拟[J]. 焊接学报, 2010, 31(2): 71-74.

【13】Pang S Y, Chen L L, Zhou J X, et al.. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding[J]. Journal of Physics D, 2011, 44(2): 025301.

【14】Wang Jinfeng, Wang Lijun, Yang Lijun, et al.. Research on microstructure and properties of laser welding DP1000 high-strength steel weld joints[J]. Chinese J Lasers, 2014, 41(9): 0903003.
王金凤, 王立君, 杨立军, 等. DP1000高强钢激光焊接接头组织性能研究[J]. 中国激光, 2014, 41(9): 0903003.

【15】Jia Jin, Yang Shanglei, Ni Weiyuan, et al.. Study on microstructure and properties of laser welding joints of marine high strength steel E36[J]. Chinese J Lasers, 2014, 41(2): 0203002.
贾进, 杨尚磊, 倪维源, 等. 船用高强钢E36激光焊接接头组织和性能的研究[J]. 中国激光, 2014, 41(2): 0203002.

【16】Farabi N, Chen D L, Li J, et al.. Microstructure and mechanical properties of laser welded DP600 steel joints[J]. Materials Science and Engineering A, 2010, 527(4-5): 1215-1222.

【17】Lee J H, Park S H, Kwon H S, et al.. Laser, tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance[J]. Materials and Design, 2014, 64: 559-565.

【18】Cai Jianpeng, Sun Jiamin, Xia Linyin, et al.. Prediction on welding residual stress and deformation in Q345 steel butt-welded joints[J]. Transactions of the China Welding Institution, 2015, 36(11): 61-68.
蔡建鹏, 孙加民, 夏林印, 等. Q345钢对接接头残余应力与变形的预测[J]. 焊接学报, 2015, 36(11): 61-68.

【19】Deng D. FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects[J]. Materials and Design, 2009, 30(2): 359-366.

【20】Wang J T. Investigation of buckling distortion of ship structure due to welding assembly using inherent deformation theory[D]. Osaka: Osaka University, 2012: 15-16.

【21】武传松. 焊接热过程数值分析[M]. 哈尔滨: 哈尔滨工业大学出版社, 1990: 120-125.

【22】Deng D A, Zhou Y J, Bi T, et al.. Experimental and numerical investigations of welding distortion induced by CO2 gas arc welding in thin-plate bead-on joints[J]. Materials and Design, 2013, 52(24): 720-729.

【23】Verhaeghe G. Predictive formulate for weld distortion: A critical review[M]. Cambridge: Abington Publishing, 1999.

【24】White J D, Leggatt R H, Dwight J B. Welding shrinkage prediction[J]. Weld Metal Fabrication, 1980, 11: 587-596.

【25】Wu Qiang, Xu Lanying, Yang Yongqiang, et al.. Study on laser welding residual stress of high strength steel[J]. Chinese J Lasers, 2015, 42(6): 0603007.
伍强, 徐兰英, 杨永强, 等. 高强钢激光焊接残余应力的研究[J]. 中国激光, 2015, 42(6): 0603007.

引用该论文

Mao Zhitao,Pu Xiaowei,Wang Weideng,Ye Yanhong,Deng Dean. Comparison of Welding Deformation and Residual Stress in Q345 Steel Thin-Plate Joints Induced by Laser Beam Welding and Gas Metal Arc Welding[J]. Chinese Journal of Lasers, 2016, 43(6): 0602010

毛志涛,蒲晓薇,汪维登,叶延洪,邓德安. Q345钢激光焊与气体保护焊的焊接变形与残余应力对比[J]. 中国激光, 2016, 43(6): 0602010

被引情况

【1】芦伟,马旭颐,巩水利,杨璟. 激光焊接工艺对GH188合金焊缝成形及力学性能的影响. 激光与光电子学进展, 2017, 54(4): 41409--1

【2】韩晓辉,雷正,李仁东,刘艳,陈辉. 贝氏体钢激光电弧复合焊接接头疲劳裂纹扩展. 中国激光, 2019, 46(10): 1002014--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF