首页 > 论文 > 光学 精密工程 > 24卷 > 4期(pp:709-713)

超燃发动机流场组分浓度的在线测量

On-line measurement of species concentration in flow field of scramjet engine

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了正确评价超燃发动机试验状态, 采用自发拉曼散射技术在线测量了超燃发动机流场的主要组分。基于发动机试验条件和发动机与光学诊断技术的接口, 建立了用于发动机流场组分测量的自发拉曼散射实验系统; 测量了多车次发动机试验过程中流场主要组分的拉曼光谱; 最后, 通过光谱计算获得了流场主要组分浓度信息并重点分析了来流氧气含量及其变化情况。实验显示: 发动机试验中, 部分车次试验补氧后的来流中氧气的最大含量达到了30%, 最小含量为18%, 说明发动机试验过程中, 对补氧量的控制精确和稳定性还有待提高。结果表明: 采用自发拉曼散射技术可以较好地完成来流主要组分浓度测量工作, 测量结果可用于发动机试验数据的分析及来流补氧控制方式和控制精度的改进。

Abstract

To properly evaluate the experimental state of a scramjet engine, the Spontaneous Raman scattering technique was used to measure the main species in flow field of the scramjet engine. According to the engine experimental conditions and the interface of engine and optical diagnosis, a spontaneous Raman scattering experimental system for the engine flow field diagnosis was established. Then, the Raman spectra of the major species in the flow field of scramjet experiment were measured. Finally, the concentration of the major species was obtained by analyzing the Raman spectra, and the oxygen content of the incoming flow was emphatically analyzed. The results show that the maximum oxygen content and minimum oxygen content are 30% and 18% respectively in the incoming flow after oxygen supplementation. It means that the control precision and stability of oxygen supplementation in the scramjet experiment should be improved. The results also demonstrate that spontaneous Raman scattering technique works well for the species concentration measurements in the flow field, and obtained measurement results can be utilized for the analysis of scramjet experimental data and the improvement of the control method and control accuracy of oxygen supplementation for the incoming flow.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH744.4;O437.3

DOI:10.3788/ope.20162404.0709

所属栏目:现代应用光

基金项目:激光与物质相互作用国家重点实验室研究基金资助项目(No.SKLLIM1507)

收稿日期:2015-12-21

修改稿日期:2016-01-08

网络出版日期:--

作者单位    点击查看

张振荣:西北核技术研究所 激光与物质相互作用国家重点实验室, 陕西 西安 710024
李国华:西北核技术研究所 激光与物质相互作用国家重点实验室, 陕西 西安 710024
叶景峰:西北核技术研究所 激光与物质相互作用国家重点实验室, 陕西 西安 710024
胡志云:西北核技术研究所 激光与物质相互作用国家重点实验室, 陕西 西安 710024
邵珺:西北核技术研究所 激光与物质相互作用国家重点实验室, 陕西 西安 710024
王晟:西北核技术研究所 激光与物质相互作用国家重点实验室, 陕西 西安 710024

联系人作者:张振荣(zhangzhenrong@nint.ac.cn)

备注:张振荣(1974-), 男, 陕西蒲城人, 硕士, 副研究员, 1997年于西北工业大学获得学士学位, 2004年于西北核技术研究所获得硕士学位, 主要从事激光技术及应用方面的研究。

【1】王建臣, 林宇震, 刘伟, 等.蓄热式加热纯净空气直连台试验能力研究[J].推进技术, 2014, 35(10): 1392-1397.
WANG J CH, LIN Y ZH, LIU W, et al.. Research of clean air storage heater for direct-connected test-bed[J]. Journal of Propulsion Technology, 2014, 35(10): 1392-1397. (in Chinese)

【2】郭帅帆, 宋文艳, 李建平, 等.燃烧加热污染空气对超燃冲压发动机性能影响研究[J]. 推进技术, 2013, 34(4): 493-498.
GUO SH F, SONG W Y, LI J P, et al.. Numerical investigation of effects of vitiated air on scram jet performance[J]. Journal of Propulsion Technology, 2013, 34(4): 493-498. (in Chinese)

【3】王晟, 胡志云, 邵珺, 等.双色热敏磷光涂层测温技术[J]. 红外与激光工程, 2014, 43(5): 1406-1410.
WANG SH, HU ZH Y, SH J, et al..Two-color thermally sensitive phosphor coatings for temperature measurement[J].Infrared and Laser Engineering, 2014, 43(5): 1406-1410. (in Chinese)

【4】瞿谱波, 关小伟, 张振荣, 等. 激光诱导热光栅光谱测温技术研究[J].物理学报, 2015, 64(12): 123301.
QU P B, GUAN X W, ZHANG ZH R, et al.. Laser induced thermal grating spectroscopy thermometry technique[J]. Acta Phys. Sin., 2015, 64(12): 123301. (in Chinese)

【5】王晟, 张振荣, 邵珺, 等. 瞬态流场定量测量中平面激光诱导荧光图像的降噪[J]. 光学 精密工程, 2013, 21(7): 1858-1894.
WANG SH, ZHANG ZH R, SHAO J, et al.. Denoising of PLIF images for flow parameter measurement[J]. Opt. Precision Eng., 2013, 21(7): 1858-1894. (in Chinese)

【6】张振荣, 叶景峰, 王晟, 等.煤油燃烧场主要组分浓度测量[J].强激光与粒子束, 2014, 26(7): 019003.
ZHANG ZH R, YE J F, WANG SH, et al.. Measurements of major species concentration in kerosene combustion[J]. High Power Laser and Particle Beams, 2014, 26(7): 019003. (in Chinese)

【7】GRADY N R, FRANKLAND J H, PITZ R W. UV Raman scattering measurements of supersonic reacting flow over a piloted, ramped cavity[C]. AIAA, 2012: 614.

【8】PITZ R W, GRADY N R, SHOPOFF S W. UV Raman scattering measurements of a Mach 2 reacting flow over a piloted cavity[C].AIAA, 2008: 244.

【9】SMITH M S. Raman density and gas-sampling measurements during Tunnel 9 Mach 8 calibration[C]. AIAA, 2006: 2814.

【10】WEHR L, MEIER W, KUTNE P, et al.. Single-pulse 1D laser Raman scattering applied in a gas turbine model combustor at elevated pressure[J]. Proceedings of the Combustion Institute, 2007, 31: 3099-3106.

【11】LOCKE R J.Temperature and species measurements of combustion produced by a 9-point lean direct injector[C].AIAA, 2013: 562.

【12】SUTTON J A, PATTON R A, GABET K N, et al.. Towards high-repetition rate Rayleigh and Raman scattering imaging in turbulent jets and flames[C].AIAA, 2010: 857.

引用该论文

ZHANG Zhen-rong,LI Guo-hua,YE Jing-feng,HU Zhi-yun,SHAO Jun,WANG Sheng. On-line measurement of species concentration in flow field of scramjet engine[J]. Optics and Precision Engineering, 2016, 24(4): 709-713

张振荣,李国华,叶景峰,胡志云,邵珺,王晟. 超燃发动机流场组分浓度的在线测量[J]. 光学 精密工程, 2016, 24(4): 709-713

被引情况

【1】高明亮,王雪敏,申晋,黄钰,王雅静,李秀峰. 多角度动态光散射角度误差影响测量的途径分析. 光子学报, 2017, 46(10): 1029002--1

【2】邵珺,叶景峰,王晟,胡志云,方波浪,张振荣,李景银. 燃烧流场羟基示踪测速的噪声去除方法. 中国激光, 2019, 46(3): 309001--1

【3】邵珺,方波浪,叶景峰,王晟,李景银. 提高复杂燃烧流场羟基示踪测速精度的方法. 光子学报, 2019, 48(4): 412001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF