基于可变光脉冲诱导荧光的浮游植物光合作用参数测量系统设计
Design of Phytoplankton Photosynthetic Parameter Measurement System Based on Variable Pulse Induced Fluorescence
摘要
浮游植物光合作用参数的快速测量对水华和赤潮灾害预警及水体生态研究具有重要作用。针对高速重复脉冲(FRR)光合作用参数测量技术中由窄脉冲光源激发引起的高数据采样率问题,采用单光脉冲实现单周转模式激发,应用脉冲积分法实现弛豫模式微弱光脉冲信号检测,设计了基于可变光脉冲诱导荧光的浮游植物光合作用参数测量系统,将数据采样率需求由10 MS/s以上降低至1 MS/s。实现了浮游植物光系统II(PSII)功能吸收截面、PSII最大光化学量子产率以及QA-(还原后的初级电子受体)再氧化时间常数的快速测量。实验表明,测量结果的相对标准偏差均小于3%。
Abstract
Rapid measurement of phytoplankton photosynthetic parameters is important for bloom and red tide prediction as well as water ecological research. In order to solve the problem of high data sampling rate caused by narrow pulse light source when the fast repetition rate (FRR) method is applied, a phytoplankton photosynthetic parameter measurement system based on variable pulse induced fluorescence is designed. The designed system utilizes a single pulse to realize the single turnover excitation mode, and employs pulse integration to implement weak light pulse signal detection in the relaxation mode. The data sampling rate can be reduced from higher than 10 MS/s to 1 MS/s. The functional absorption cross section of photosystem II (PSII), maximum quantum yield of photochemistry in PSII, and QA- (reduced primary electron acceptor) reoxidation time constant, can be measured rapidly. The relative standard deviation of the three parameters is less than 3%.
中图分类号:O439
所属栏目:光学器件
基金项目:国家自然科学基金(31400317)、安徽省高校自然科学研究重点项(KJ2016A594,KJ2014A211)、安徽省自然科学基金(1408085MD72)
收稿日期:2016-02-01
修改稿日期:2016-03-04
网络出版日期:2016-06-22
作者单位 点击查看
高先和:合肥学院电子信息与电气工程系, 安徽 合肥 230601
殷高方:中国科学院安徽光学精密机械研究所国家环境保护环境光学监测技术重点实验室, 安徽 合肥 230031
周泽华:合肥学院电子信息与电气工程系, 安徽 合肥 230601
卢军:合肥学院电子信息与电气工程系, 安徽 合肥 230601
胡学友:合肥学院电子信息与电气工程系, 安徽 合肥 230601
联系人作者:石朝毅(chaoyi@mail.ustc.edu.cn)
备注:石朝毅(1986—), 男, 博士, 讲师, 主要从事光电信息处理方面的研究。
【1】Dubinsky Z. Photosynthesis[M]. Croatia: InTech, 2013.
【2】Antonowicz J P, Mudryk Z, Zdanowicz M. A relationship between accumulation of heavy metals and microbiological parameters in the surface microlayer and subsurface water of a coastal Baltic lake[J]. Hydrobiologia, 2015, 762(1): 65-80.
【5】Barnes M K, Tilstone G H, Smyth T J, et al.. Absorption-based algorithm of primary production for total and size-fractionated phytoplankton in coastal waters[J]. Marine Ecology Progress Series, 2014, 504: 73-89.
【6】Yusuf M A, Kumar D, Rajwanshi R, et al.. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements[J]. Biochimica Biophysica Acta, 2010, 1797(8): 1428-1438.
【7】Pei Shaofeng, Laws E A, Ye Siyuan, et al.. Study on the discrepancy in applying 14C tracer technique to measure marine primary productivity[J]. Marine Sciences, 2014, 38(12): 149-156.
裴绍峰, Laws E A, 叶思源, 等. 利用14C标记技术测定海洋初级生产力的绉议[J]. 海洋科学, 2014, 38(12): 149-156.
【8】Suggett D J. Chlorophyll a fluorescence in aquatic sciences: Methods and applications[M]. Dordrecht: Springer, 2011.
【9】Schreiber U, Klughammer C, Kolbowski J. Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer[J]. Photosynthesis Research, 2012, 113(1): 127-144.
【10】Zhang Wenting, Li Pengmin. Application of simultaneous measurement of prompt and delayed chlorophyll fluorescence and the 820 nm reflection kinetics in photosynthesis study[J]. Acta Biophysica Sinica, 2015, 31(3): 221-229.
张雯婷, 李鹏民. 瞬时与延迟叶绿素荧光及820 nm光反射动力学同步测量技术在光合作用研究中的应用[J]. 生物物理学报, 2015, 31(3): 221-229.
【11】Perron M C, Qiu B, Boucher N, et al.. Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae[J]. Toxicon, 2012, 59(5): 567-577.
【12】Mauzerall D. Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen[J]. Proceedings of the National Academy of Sciences, 1972, 69(6): 1358-1362.
【13】Schreiber U. Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer[J]. Photosynthesis Research, 1986, 9(1): 261-272.
【14】Kolber Z, Falkowski P G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ[J]. Limnology and Oceanography, 1993, 38(8): 1646-1665.
【16】Liu Jing. Method of phytoplankton photosynthesis activity measurement in situ and system design[D]. Hefei: University of Science and Technology of China, 2013.
刘晶. 浮游植物光合作用活性原位测量方法与系统研制[D]. 合肥: 中国科学技术大学, 2013.
【17】Kolber Z, Falkowski P. Fast repetition rate (FRR) fluorometer and method for measuring fluorescence and photosynthetic parameters: US5426306[P]. 1995-06-20.
【18】Oxborough K, Moore C M, Suggett D J, et al.. Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: A new approach to the analysis of fast repetition rate fluorometry (FRRf) data[J]. Limnology and Oceanography: Methods, 2012, 10(3): 142-154.
【19】Silsbe G M, Oxborough K, Suggett D J, et al.. Toward autonomous measurements of photosynthetic electron transport rates: An evaluation of active fluorescence-based measurements of photochemistry[J]. Limnology and Oceanography: Methods, 2015, 13(3): 138-155.
【20】Shi C Y, Zhang Y J, Yin G F, et al.. Measurement of algae PSII photosynthetic parameters using high-frequency excitation flashes[J]. Chinese Optics Letters, 2014, 12(8): 080101.
【21】Kolber Z S, Práil O, Falkowski P G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: Defining methodology and experimental protocols[J]. Biochimica Biophysica Acta, 1998, 1367(1-3): 88-106.
【22】Kolber Z S, Falkowski P G. Multiple protocol fluorometer and method: US6121053[P]. 2000-09-19.
【26】Wen Jing, Wen Yumei, Li Ping, et al.. Test method for the electrical characteristics of LED based on photo excitation and photo detection[J]. Journal of Optoelectronics·Laser, 2011, 22(7): 1051-1056.
文静, 文玉梅, 李平, 等. 采用光激励和光检测的LED电特性测试方法[J]. 光电子·激光, 2011, 22(7): 1051-1056.
【27】Li Jiaming. Study on high precision, wide bandwidth CMOS fully differential operational amplifier technology[D]. Chengdu: University of Electronic Science and Technology of China, 2006.
李嘉明. 高精度、宽带宽CMOS全差分运算放大器技术研究[D]. 成都: 电子科技大学, 2006.
【28】Lakowicz J R. Principles of fluorescence spectroscopy (3rd edition)[M]. New York: Springer Science & Business Media, 2013.
【29】Graeme J. Photodiode amplifiers: Op amp solutions[M]. New York: McGraw-Hill, Inc., 1995.
引用该论文
Shi Chaoyi,Gao Xianhe,Yin Gaofang,Zhou Zehua,Lu Jun,Hu Xueyou. Design of Phytoplankton Photosynthetic Parameter Measurement System Based on Variable Pulse Induced Fluorescence[J]. Laser & Optoelectronics Progress, 2016, 53(7): 072301
石朝毅,高先和,殷高方,周泽华,卢军,胡学友. 基于可变光脉冲诱导荧光的浮游植物光合作用参数测量系统设计[J]. 激光与光电子学进展, 2016, 53(7): 072301
被引情况
【1】张小玲,殷高方,赵南京,杨瑞芳,覃志松,陈双,甘婷婷,肖雪,段静波,刘建国,刘文清. 基于加权平均法的活体藻类三维荧光标准光谱构建. 光学学报, 2018, 38(7): 730001--1