首页 > 论文 > 光学学报 > 36卷 > 7期(pp:714002--1)

端面抽运固体激光器中Nd∶YAG和Nd∶YVO4晶体组合应用技术研究

Composite Application Techonolgy of Nd∶YAG and Nd∶YVO4 Crystal in end Pumped Solid-State Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用Nd∶YAG与Nd∶YVO4晶体组合应用的方案,将具有优良导热和光电性能的Nd∶YAG晶体作为抽运光的前端吸收晶体,其后端放置具有较宽吸收谱的Nd∶YVO4晶体,用来吸收由于谱宽不匹配而没有被Nd∶YAG晶体吸收的抽运光能量成分。两种晶体在波长1064 nm处的发射谱相互重叠,其吸收的抽运光能量可以转化成共同波长的振荡激光,提高了抽运光的利用效率。这种组合应用的方式还可以有效抑制振荡光功率随抽运源工作温度变化而产生的波动。实验证明,采用这种激光晶体的组合应用方案,相对于单一Nd∶YAG晶体方案,激光器的光光转换效率可提升22.9%,输出功率对温度的敏感度由7%降到1%以内。

Abstract

The scheme of Nd∶YAG and Nd∶YVO4 crystal composite application is proposed. The Nd∶YAG crystal with good thermal conductivity and optical properties is used as the front end of pump light absorption crystal, and placing a wider absorption spectrum Nd∶YVO4 crystal at its rear-end to absorb the pumping light energy composition, which is not absorbed by Nd∶YAG crystal due to the spectral width does not match. Two kinds of crystals in the 1064 nm wavelength emission spectrum overlap each other. The absorption of pump light energy can be converted to common oscillation laser wavelength, the efficiency of pumping light is improved. The proposed composite applications can effectively reduce the oscillating light power changing with pumping source working temperature fluctuations. Experimental results show that the proposed composite application scheme improves the optical-to-optical efficiency of pump sources by 22.9%, and the sensitivity of output power affected by temperature is reduced from 7% to 1%, comparing with the single Nd∶YAG crystal scheme.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.1

DOI:10.3788/aos201636.0714002

所属栏目:激光器与激光光学

基金项目:国家预研基金(9140A02010514DZ01019)

收稿日期:2016-02-18

修改稿日期:2016-03-11

网络出版日期:--

作者单位    点击查看

屈鹏飞:西安电子科技大学物理与光电工程学院, 陕西 西安710071
王石语:西安电子科技大学物理与光电工程学院, 陕西 西安710071
过振:西安电子科技大学物理与光电工程学院, 陕西 西安710071
蔡德芳:西安电子科技大学物理与光电工程学院, 陕西 西安710071
李兵斌:西安电子科技大学物理与光电工程学院, 陕西 西安710071

联系人作者:屈鹏飞(qupengfei_119@163.com)

备注:屈鹏飞(1987-),男,博士研究生,主要从事新型光电子器件方面的研究。

【1】Chénais S, Balembois F, Druon F, et al.. Thermal lensing in diode-pumped ytterbium lasers-part II: Evaluation of quantum efficiencies and thermo-optic coefficients[J]. Quantum Electronics, IEEE Journal of, 2004, 40(9): 1235-1243.

【2】Chénais S, Balembois F, Druon F, et al.. Thermal lensing in diode-pumped Ytterbium lasers-Part I: Theoretical analysis and wavefront measurements[J]. Quantum Electronics, IEEE Journal of, 2004, 40(9): 1217-1234.

【3】Bonnefois A M, Gilbert M, Thro P Y, et al.. Thermal lensing and spherical aberration in high-power transversally pumped laser rods[J]. Optics Communications, 2006, 259(1): 223-235.

【4】Chénais S, Forget S, Druon F, et al.. Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb: YAG[J]. Applied Physics B, 2004, 79(2): 221-224.

【5】Song X, Li B, Guo Z, et al.. Influences of pump beam distribution on thermal lensing spherical aberration in an LD end-pumped Nd∶YAG laser[J]. Optics Communications, 2009, 282(24): 4779-4783.

【6】Safari E, Kachanov A. Estimation of thermal lensing effect in the high-power end-pumped direct-cut crystal lasers[J]. Optics & Laser Technology, 2006, 38(7): 534-539.

【7】Xu L, Zhang H, He J, et al.. Double-end-pumped Nd∶YVO 4 slab laser at 1064 nm[J]. Applied Optics, 2012, 51(12): 2012-2014.

【8】Zhang H, Chao M, Gao M, et al.. High power diode single-end-pumped Nd∶YVO 4 laser[J]. Optics & Laser Technology, 2003, 35(6): 445-449.

【9】Shi Zhaohui, Liu Xuedong, Huang Yutao, et al.. 500 kHz, 6 ns high repetition-rate electro-optical cavity dumped Nd∶YVO4 laser[J]. Chinese J Lasers, 2014, 41(10): 1002006.
石朝辉, 刘学松, 黄玉涛, 等. 500 kHz, 6 ns高重复频率电光腔倒空Nd∶YVO4激光器[J]. 中国激光, 2014, 41(10): 1002006.

【10】Ai Qingkang, Chang Liang, Chen Meng, et al.. Thermal analysis of Nd∶YVO4 pumped by 808 nm and 888 nm[J]. Chinese J Lasers, 2011, 38(4): 0402001.
艾庆康, 常亮, 陈蒙, 等. 808 nm与888 nm抽运Nd∶YVO4热效应分析[J]. 中国激光, 2011, 38(4): 0402001.

【11】Wu Quan, Fan Zhongwei, Yu Jin, et al.. Research progress of nanosecond regime pulsed fiber laser[J]. Laser & Optoelectronics Progress, 2012, 49(6): 060004.
吴权, 樊仲维, 余锦, 等. 纳秒量级脉冲光纤激光器研究进展[J]. 激光与光电子学进展, 2012, 49(6): 060004.

【12】Li Pingxue, Yang Chun, Yao Yifei, et al.. Research progress of 980 nm fiber laser[J]. Laser & Optoelectronics Progress, 2013, 50(10): 100001.
李平雪, 杨春, 姚毅飞, 等. 980 nm光纤激光器的研究发展[J]. 激光与光电子学进展, 2013, 50(10): 100001.

【13】Li Bin, Ding Xin, Sun Bing, et al.. Laser-diode-pumped coaxial double crystals Nd∶YAG/Nd∶YVO4 Cr:YAG passively Q-switched laser[J]. Chinese J Lasers, 2015, 42(4): 0402003.
李斌, 丁欣, 孙冰, 等. 激光二极管抽运Nd∶YAG/Nd∶YVO4共轴双晶体Cr:YAG被动调Q激光器[J]. 中国激光, 2015, 42(4): 0402003.

【14】Wang Di. The effect of Nd3+ doping on the LD-pumped Nd∶YAG pulsed laser output characteristics[D]. Changchun: Changchun University of Science and Technology, 2011: 9-10.
王迪. Nd3+掺杂浓度对LD泵浦Nd∶YAG脉冲激光器输出特性影响的研究[D]. 长春: 长春理工大学, 2011: 9-10.

【15】Li Jianhong, Wang Shuhua, Nie Yi, et al.. Optical absorption properties for Nd∶YVO4 laser crystals near 808 nm wavelength[J]. Chinese Journal of Quantum Electronics, 2014, 31(2): 154-159.
李建宏, 王淑华, 聂奕, 等. Nd∶YVO4激光晶体对808 nm附近光的吸收特性[J]. 量子电子学报, 2014, 31(2): 154-159.

【16】Li Bin, Ding Xin, Zhang Wei, et al.. 1064 nm Nd∶YVO4 laser pumped by wave-locked 878.6 nm laser diode[J]. Chinese J Lasers, 2014, 41(5): 0502010.
李斌, 丁欣, 张巍, 等. 波长锁定878.6 nm激光二极管抽运Nd∶YVO4 1064 nm激光器[J]. 中国激光, 2014, 41(5): 0502010.

【17】Koechner W. Solid-state laser engineering[M]. Berlin: Springer, 2002: 63-64.

【18】Yin Xiaoxue, Guo Zhen, Li Bingbin, et al.. Laser crystal thermal effect and ladder pump tecnology[J]. Electronic Science and Technology, 2010, 23(2): 39-41.
尹晓雪, 过振, 李兵斌, 等. 激光晶体热效应的阶梯泵浦技术[J]. 电子科技, 2010, 23(2): 39-41.

引用该论文

Qu Pengfei,Wang Shiyu,Guo Zhen,Cai Defang,Li Bingbin. Composite Application Techonolgy of Nd∶YAG and Nd∶YVO4 Crystal in end Pumped Solid-State Laser[J]. Acta Optica Sinica, 2016, 36(7): 0714002

屈鹏飞,王石语,过振,蔡德芳,李兵斌. 端面抽运固体激光器中Nd∶YAG和Nd∶YVO4晶体组合应用技术研究[J]. 光学学报, 2016, 36(7): 0714002

被引情况

【1】屈鹏飞,王石语,邵新征,过 振,蔡德芳,李兵斌. Nd∶YAG/Nd∶YVO4组合晶体激光器温度稳定性研究. 光学学报, 2017, 37(6): 614001--1

【2】李隆,潘晓瑞,耿鹰鸽. LD端面抽运Nd∶YAG微片热容激光器温度场. 激光与光电子学进展, 2017, 54(12): 121404--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF