首页 > 论文 > 中国激光 > 43卷 > 7期(pp:700001--1)

光纤激光传感系统的研究进展

Progress in Optical Fiber Laser Sensing System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光纤激光传感系统作为一种新型的光纤传感技术,结合了光纤传感的高灵敏度、可分布式测量和不易受电磁干扰等优点,以及光纤激光器的窄线宽和高光信噪比等优势,能够很好地应用于油田、矿山、桥梁、电力以及飞机等领域的测量和安全监控。从两个方面介绍了目前光纤激光传感系统的研究进展,一方面是基于单参量测量的光纤激光传感系统,系统所探测的参量包含了温度、应变、折射率、电流、声波和风速等;另一方面是基于双参量测量的光纤激光传感系统,主要是解决温度与横向应力、应变和折射率等交叉敏感的问题。

Abstract

As a new type of optical fiber sensing technology, the optical fiber laser sensing system combines the advantages of fiber sensors of high sensitivity, distributed measurement capability and less susceptible to electromagnetic interference, with the advantages of fiber lasers of narrow linewidth and high optical signal to noise ratio, so it is used in measurement and security monitoring in the field of oil, mining, bridges, electricity, aircraft and so on. The research progress of optical fiber laser sensing system is introduced from two aspects. One is the optical fiber laser sensing system for the single-parameter measurement, including temperature, strain, refractive index, current, acoustic wave, wind speed and so on; the other is the optical fiber laser sensing system for the dual-parameter measurement, which is mainly used to solve the problem of cross sensitivity of temperature and transverse stress, strain and refractive index.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN29

DOI:10.3788/cjl201643.0700001

所属栏目:综述

基金项目:国家自然科学基金(61525501,61275076)

收稿日期:2016-01-08

修改稿日期:2016-03-08

网络出版日期:--

作者单位    点击查看

裴丽:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
翁思俊:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
吴良英:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
王建帅:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
刘超:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044

联系人作者:裴丽(lipei@bjtu.edu.cn)

备注:裴丽(1970—),女,博士,教授,主要从事光器件、光纤传感及光纤通信等方面的研究。

【1】Liu Yunhao. Introduction to internet of things[M]. 2th ed. Beijing: Science Press, 2013.
刘云浩. 物联网导论[M]. 2版. 北京: 科学出版社, 2013.

【2】Wang Zhi, Chu Fenghong. Research advances in optical fiber current sensor technology[J]. Laser & Optoelectronics Progress, 2014, 51(10): 100002.
王志, 初凤红. 光纤电流传感技术研究进展[J]. 激光与光电子学进展, 2014, 51(10): 100002.

【3】Yang Mu, Liu Xiuhong, Liu Wei, et al.. Applied research of optical fiber sensor in oil and gas pipe corrosion monitoring[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020604.
杨牧, 刘秀红, 刘伟, 等. 光纤光栅传感网络在油气出地管内腐蚀监测的应用研究[J]. 激光与光电子学进展, 2014, 51(2): 020604.

【4】Chen Hao, Liu Yueming, Zou Jianyu, et al.. Research status and development trends of fiber optical technology for water quality monitoring[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030006.
陈浩, 刘月明, 邹建宇, 等. 光纤水质检测技术的研究现状与发展趋势[J]. 激光与光电子学进展, 2015, 52(3): 030006.

【5】Koo K P, Kersey A D. Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation[J]. Electronics Letters, 1995, 31(14): 1180-1182.

【6】Cranch G A, Flockhart G M H, Kirkendall C K. Distributed feedback fiber laser strain sensors[J]. IEEE Sensors Journal, 2008, 8(7): 1161-1172.

【7】Zhang Y, Guan B O. High-sensitivity distributed Bragg reflector fiber laser displacement sensor[J]. IEEE Photonics Technology Letters, 2009, 21(5): 280-282.

【8】Jin L, Tan Y N, Quan Z, et al.. Strain-insensitive temperature sensing with a dual polarization fiber grating laser[J]. Optics Express, 2012, 20(6): 6021-6028.

【9】Pei L, Liu C, Li J, et al.. Highly sensitive axial strain fiber laser sensor based on all-fiber acousto-optic tunable filter[J]. IEEE Photonics Technology Letters, 2014, 26(24): 2430-2433.

【10】Stefani A, Yuan W, Markos C, et al.. Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers[J]. IEEE Photonics Technology Letters, 2011, 23(10): 660-662.

【11】Dong X Y, Tam H Y, Shum P. Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer[J]. Applied Physics Letters, 2007, 90(15): 151113.

【12】Yang R, Yu Y S, Xue Y, et al.. Single S-tapered fiber Mach-Zehnder interferometers[J]. Optics Letters, 2011, 36(23): 4482-4484.

【13】Favero F C, Araujo L, Bouwmans G, et al.. Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing[J]. Optics Express, 2012, 20(7): 7112-7118.

【14】Zhang Y, Zhang M, Jin W, et al.. Investigation of erbium-doped fiber laser intra-cavity absorption sensor for gas detection[J]. Optics Communications, 2004, 234(1): 435-441.

【15】Dai Y, Sun Q Z, Tan S, et al.. Highly sensitive liquid-level sensor based on dual-wavelength double-ring fiber laser assisted by beat frequency interrogation[J]. Optics Express, 2012, 20(25): 27367-27376.

【16】Guan B O, Wang S N. Fiber grating laser current sensor based on magnetic force[J]. IEEE Photonics Technology Letters, 2010, 22(4): 230-232.

【17】Han M, Liu T Q, Hu L L, et al.. Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection[J]. Optics Express, 2013, 21(24): 29269-29276.

【18】Liu T Q, Hu L L, Han M. Multiplexed fiber-ring laser sensors for ultrasonic detection[J]. Optics Express, 2013, 21(25): 30474-30480.

【19】Liu Y, Peng W, Zhang X, et al.. Fiber-optic anemometer based on distributed Bragg reflector fiber laser technology[J]. IEEE Photonics Technology Letters, 2013, 25(13): 1246-1249.

【20】Lan X, Huang J, Han Q, et al.. Fiber ring laser interrogated zeolite-coated singlemode-multimode-singlemode structure for trace chemical detection[J]. Optics Letters, 2012, 37(11): 1998-2000.

【21】Liu Z B, Li Y, Liu Y, et al.. A static axial strain fiber ring cavity laser sensor based on multi-modal interference[J]. IEEE Photonics Technology Letters, 2013, 25(21): 2050-2053.

【22】Liu Z B, Tan Z W, Yin B, et al.. Refractive index sensing characterization of a singlemode-claddingless-singlemode fiber structure based fiber ring cavity laser[J]. Optics Express, 2014, 22(5): 5037-5042.

【23】Lee J H, Kim J, Han Y G, et al.. Investigation of Raman fiber laser temperature probe based on fiber Bragg gratings for long-distance remote sensing applications[J]. Optics Express, 2004, 12(8): 1747-1752.

【24】Martins H F, Marques M B, Frazo O. Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering[J]. Applied Physics B, 2011, 104(4): 957-960.

【25】Kringlebotn J T, Loh W H, Laming R I. Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements[J]. Optics Letters, 1996, 21(22): 1869-1871.

【26】Liu B, Zhang H. Polarimetric distributed Bragg reflector fiber laser sensor array for simultaneous measurement of transverse load and temperature[J]. Optical Fiber Technology, 2011, 17(6): 619-625.

【27】Hadeler O, Ibsen M, Zervas M N. Distributed-back fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain[J]. Applied Optics, 2001, 40(19): 3169-3175.

【28】Han Y G, Tran T V A, Kim S H, et al.. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature[J]. Optics Letters, 2005, 30(11): 1282-1284.

【29】Liu D, Ngo N Q, Tjin S C, et al.. A dual-wavelength fiber laser sensor system for measurement of temperature and strain[J]. IEEE Photonics Technology Letters, 2007, 19(15): 1148-1150.

【30】Tan Y N, Zhang Y, Jin L, et al.. Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement[J]. Optics Express, 2011, 19(21): 20650-20656.

【31】Gao L, Chen L, Huang L, et al.. Multimode fiber laser for simultaneous measurement of strain and temperature based on beat frequency demodulation[J]. Optics Express, 2012, 20(20): 22517-22522.

【32】Leandro D, Ams M, Lopez-Amo M, et al.. Simultaneous measurement of strain and temperature using a single emission line[J]. Journal of Lightwave Technology, 2015, 33(12): 2426-2431.

【33】Wong A C L, Chung W H, Tam H Y, et al.. Single tilted Bragg reflector fiber laser for simultaneous sensing of refractive index and temperature[J]. Optics Express, 2011, 19(2): 409-414.

引用该论文

Pei Li,Weng Sijun,Wu Liangying,Wang Jianshuai,Liu Chao. Progress in Optical Fiber Laser Sensing System[J]. Chinese Journal of Lasers, 2016, 43(7): 0700001

裴丽,翁思俊,吴良英,王建帅,刘超. 光纤激光传感系统的研究进展[J]. 中国激光, 2016, 43(7): 0700001

被引情况

【1】孙诗晴,初凤红. 基于优化神经网络算法的光纤布拉格光栅电流传感器的温度补偿. 光学学报, 2017, 37(10): 1006001--1

【2】宋凝芳,宋鹏,宋镜明,亢提. 光纤法布里-珀罗传感器偏振互相关解调系统的复消色差光路设计. 中国激光, 2017, 44(12): 1206005--1

【3】张冰,王葵如,颜玢玢,周红仙,王毅,余重秀,苑金辉,桑新柱. 基于双波长和3×3光纤耦合器的干涉测量相位解卷绕方法. 光学学报, 2018, 38(4): 412004--1

【4】赵小丽,张钰民,杨润涛,骆飞,祝连庆. 基于再生低反射率光纤光栅和饱和吸收体的高温光纤激光传感研究. 激光与光电子学进展, 2018, 55(6): 60605--1

【5】王强,许可,姚晨雨,王震,常军,任伟. 功率增强型光声光谱气体传感技术的研究进展. 中国激光, 2018, 45(9): 911008--1

【6】刘婷,王文琪,刘志群,易定容. 基于量子点和倏逝波的汞离子检测光纤传感器. 光学学报, 2018, 38(10): 1006008--1

【7】熊兴隆,张琬童,李猛,马愈昭,冯帅. 基于局部均值分解和串行特征融合的光纤周界振动信号识别. 光学学报, 2019, 39(2): 206002--1

【8】熊兴隆,张琬童,冯磊,李猛,马愈昭,冯帅. 基于多重分形谱的光纤周界振动信号识别. 光子学报, 2019, 48(2): 206001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF