首页 > 论文 > 中国激光 > 43卷 > 7期(pp:700002--1)

基于瑞利散射的超长距离分布式光纤传感技术

Ultra-Long Fully Distributed Optical Fiber Sensor Based on Rayleigh Scattering Effect

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于瑞利散射效应的相干探测光时域反射技术(COTDR)因具有高动态范围、高灵敏度等特性,而成为超长距离连续分布式传感监测的重要手段。在介绍COTDR技术的原理和发展现状基础上,对COTDR传感系统的设计及关键技术包括抑制相干衰落噪声、提高传感速度以及多机理融合传感系统等进行了研究,并对COTDR在超长通信线缆链路监测、温度和应变传感等方面的应用进行了探讨。

Abstract

The coherent optical time domain reflectometry (COTDR) based on Rayleigh scattering is an important technique for the monitoring of ultra-long fiber link, for its high dynamic range and sensitivity. The principle and development of COTDR is introduced. The design method and key techniques such as the coherent fading noise suppression, measurement speed enhancement and multi-functions fusion system structure are discussed. And several important applications of COTDR are given, including ultra-long communication optical fiber link monitoring and distributed temperature/strain sensing.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN247;TP212.14

DOI:10.3788/cjl201643.0700002

所属栏目:综述

基金项目:国家自然科学基金(61540017、61405090、61307096、61107074)

收稿日期:2016-01-11

修改稿日期:2016-03-25

网络出版日期:--

作者单位    点击查看

张旭苹:南京大学光通信工程研究中心, 江苏 南京 210093
张益昕:南京大学光通信工程研究中心, 江苏 南京 210093
王峰:南京大学光通信工程研究中心, 江苏 南京 210093
吕立冬:南京大学光通信工程研究中心, 江苏 南京 210093
王祥传:南京大学光通信工程研究中心, 江苏 南京 210093

联系人作者:张旭苹(xpzhang@nju.edu.cn)

备注:张旭苹(1962—),女,博士,教授,博士生导师,主要从事分布式光纤传感技术及其应用、光电信号探测与处理、光电集成传感等方面的研究。

【1】Chen Zhe, Qin Jiarong, Pan Hao, et al.. All-fiber integrated optical power monitor-controller[J]. Chinese J Lasers, 2010, 37(4): 1047-1052.
陈哲, 覃家荣, 潘昊, 等. 全光纤集成化光功率监控器[J]. 中国激光, 2010, 37(4): 1047-1052.

【2】Wang F, Zhan W, Zhang X, et al.. Improvement of spatial resolution for BOTDR by iterative subdivision method[J]. Journal of Lightwave Technology, 2013, 31(23): 3663-3667.

【3】Wang F, Wang X, Zhang X, et al.. Influence of optical pulse width on the perturbation detection performance of polarization-optical time domain reflectometer[J]. Applied Optics, 2012, 51(35): 8498-8504.

【4】Zhu F, Zhang Y, Xia L, et al.. Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array[J]. Journal of Lightwave Technology, 2015, 33(23): 4775-4780.

【5】Zhu F, Zhang X, Xia L, et al.. Active compensation method for light source frequency drifting in-OTDR sensing system[J]. IEEE Photonics Technology Letters, 2015, 27(24): 2523-2526.

【6】Wang Zhaoyong, Pan Zhengqing, Ye Qing, et al.. Fast pattern recognition based on frequncy spectrum analysis used for intrusion alarming in optical fiber fence[J]. Chinese J Lasers, 2015, 42(4): 0405010.
王照勇, 潘政清, 叶青, 等. 用于光纤围栏入侵告警的频谱分析快速模式识别[J]. 中国激光, 2015, 42(4): 0405010.

【7】Li Qin, Zhang Chunxi, Li Lijing, et al.. Influence of the frequncy drift of the laser on location precision of the phase-sensitivity optical time-domain reflectory[J]. Chinese J Lasers, 2014, 41(3): 0305003.
李琴, 张春熹, 李立京, 等. 激光器频率漂移对相位敏感光时域反射计扰动定位精度的影响[J]. 中国激光, 2014, 41(3): 0305003.

【8】Zhang Yan, Lou Shuqin, Liang Sheng, et al.. Study of pattern recognition based on multi-characteristic parameters for Φ-OTDR distributed optical sensing system[J]. Chinese J Lasers, 2015, 42(11): 1105005.
张颜, 娄淑琴, 梁生, 等. 基于多特征参量的Φ-OTDR分布式光纤扰动传感系统模式识别研究[J]. 中国激光, 2015, 42(11): 1105005.

【9】Zhang X, Song Y, Lu L. Time division multiplexing optical time domain reflectometry based on dual frequency probe[J]. IEEE Photonics Technology Letters, 2012, 24(22): 2005-2008.

【10】Temprana E, Myslivets E, Ataie V, et al.. Overcoming Kerr-induced capacity limit in optical fiber transmission[J]. Applied Optics, 2015, 348(6242): 1445-1448.

【11】King J, Smith D, Richards K, et al.. Development of a coherent OTDR instrument[J]. Journal of Lightwave Technology, 1987, 5(4): 616-624.

【12】Healey P, Malyon D J. OTDR in single-mode fibre at 1.5 μm using heterodyne detection[J]. Electronics Letters, 1982, 18(20): 862-863.

【13】Healey P. Fading in heterodyne OTDR[J]. Electronics Letters, 1984, 20(1): 30-32.

【14】Healey P. Fading rates in coherent OTDR[J]. Electronics Letters, 1984, 20(11): 443-444.

【15】Blank L C, Spirit D M. OTDR performance enhancement through Erbium fibre amplification[J]. Electronics Letters, 1989, 25(25): 1693-1694.

【16】Koyamada Y, Nakamoto H. High performance single mode OTDR using coherent detection and fibre amplifiers[J]. Electronics Letters, 1990, 26(9): 573-575.

【17】Sumida M, Amemiya M, Furukawa S I, et al.. Fault location on optical amplifier submarine transmission systems[J]. Electronics & Communications in Japan, 1996, 79(79): 1-10.

【18】Sato T, Horiguchi T, Koyamada Y. 1.6 μm band coherent optical time-domain reflectometry[J]. Proceeding of IMTC 1994, 1: 102-105.

【19】Kee H H, Lees G P, Newson T P. A method of increasing the range of 1.65 μm long range OTDR system based on Raman amplification[J]. Qc Physics, 1997.

【20】Sato T, Horiguchi T, Koyamada Y, et al.. A 1.6 μm band OTDR using a synchronous Raman fiber amplifier[J]. IEEE Photonics Technology Letters, 1992, 4(8): 923-924.

【21】Shimizu K, Horiguchi T, Koyamada Y. Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components[J]. Journal of Lightwave Technology, 1992, 10(7): 982-987.

【22】Shimizu K, Horiguchi T, Koyamada Y. Measurement of Rayleigh backscattering in single-mode fibers based on coherent OFDR employing a DFB laser diode[J]. IEEE Photonics Technology Letters, 1991, 3(11): 1039-1041.

【23】Izumita H, Furukawa S I, Koyamada Y, et al.. Fading noise reduction in coherent OTDR[J]. IEEE Photonics Technology Letters, 1992, 4(2): 201-203.

【24】Izumita H, Koyamada Y, Furukawa S, et al.. Stochastic amplitude fluctuation in coherent OTDR and a new technique for its reduction by stimulating synchronous optical frequency hopping[J]. Journal of Lightwave Technology, 1997, 15(2): 267-278.

【25】Furukawa S, Tanaka K, Koyamada Y, et al.. High dynamic range coherent OTDR for fault location in optical amplifier systems[C]. Instrumentation and Measurement Technology Conference, 1994, 1: 106-109.

【26】Izumita H, Koyamada Y, Furukawa S, et al.. The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena[J]. Journal of Lightwave Technology, 1994, 12(7): 1230-1238.

【27】Sumida M. OTDR performance enhancement using a quaternary FSK modulated probe and coherent detection[J]. IEEE Photonics Technology Letters 1995, 7(3): 336-338.

【28】Sumida M. Optical time domain reflectometry using an M-ary FSK probe and coherent detection[J]. Journal of Lightwave Technology, 1996, 14(11): 2483-2491.

【29】Liu L, Zhang G, Feng Z. Method and device for monitoring submarine cable systems: 09821574.2[P]. 2011-08-10.

【30】Iida H, Koshikiya Y, Ito F, et al.. Ultra high dynamic range coherent optical time domain reflectometry employing frequency division multiplexing[J]. Proceedings. of SPIE, 2011, 7753: 77533J-77533J-4.

【31】Iida H, Koshikiya Y, Ito F, et al.. High-sensitivity coherent optical time domain reflectometry employing frequency-division multiplexing[J]. Journal of Lightwave Technology, 2012, 30(8): 1121-1126.

【32】Lü Lidong. Research on frequency division multiplexing probe based coherent optical time domain reflectometry[D]. Nanjing: Nanjing University, 2012.
吕立冬. 频分复用相干光时域反射系统研究[D]. 南京: 南京大学, 2012.

【33】Lu L, Song Y, Zhu F, et al.. Coherent optical time domain reflectometry using three frequency multiplexing probe[J]. Optics and Lasers in Engineering, 2012, 50(12): 1735-1739.

【34】Lu L, Song Y, Zhang X, et al.. Frequency division multiplexing OTDR with fast signal processing[J]. Optics & Laser Technology, 2012, 44(7): 2206-2209.

【35】Zhang X, Hu J, Zhang Y. A hybrid single-end-access BOTDA and COTDR sensing system using heterodyne detection[J]. Journal of Lightwave Technology, 2013, 31(12): 1954-1959.

【36】Koyamada Y, Imahama M, Kubota K, et al.. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR[J]. Journal of Lightwave Technology, 2009, 27(9): 1142-1146.

【37】Zhou L, Wang F, Wang X, et al.. Distributed strain and vibration sensing system based on phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1884-1887.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF