首页 > 论文 > 中国激光 > 43卷 > 7期(pp:702004--1)

基于粉末特性的选区激光熔化Ti6Al4V表面粗糙度研究

Study on Surface Roughness of Selective Laser Melting Ti6Al4V Based on Powder Characteristics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用最小二乘中线法建立基于成型粉末物性的表面粗糙度计算模型;选用选区激光熔化成型Ti6Al4V单熔道和零件,用表面粗糙度仪检测成型零件的表面粗糙度,光学显微镜观察、检测成型单熔道几何尺寸,分析所建模型理论值与实验值产生误差的原因。实验结果表明:激光重熔区对表面粗糙度计算模型精度影响较大,模型理论值与实验值的平均相对误差为5.7%,误差较小,模型具有实际工程应用价值。成型零件主要由α和β相组成,显微硬度为487.3 HV0.3。

Abstract

The surface roughness calculation model based on powder properties is established by using the least square mean line method. Selective laser is used to melt molded Ti6Al4V single track and parts. The surface roughness of molded parts is detected by surface profiler and the geometric size of molded single track is observed and measured with optical microscope. The cause of errors between the theoretical and experimental value of the built model is analyzed. The experimental results show that the laser remelting zone has a great impact on the precision of the surface roughness calculation model. The average relative error between the theoretical and experimental value is 5.7%. The error is small, and the model has a practical engineering application value. The molded parts are mainly composed of α and β phases, and the micro-hardness is 487.3 HV0.3.

中国激光微信矩阵
补充资料

中图分类号:TB31;TH142.2

DOI:10.3788/cjl201643.0702004

所属栏目:激光制造

基金项目:国家自然科学基金(51505157,51275179,51405160)、广东省自然科学基金(2015A030310330)

收稿日期:2015-11-20

修改稿日期:2016-03-18

网络出版日期:--

作者单位    点击查看

孙健峰:华南农业大学工程学院, 广东 广州 510642
杨永强:华南理工大学机械与汽车工程学院, 广东 广州 510640
杨洲:华南农业大学工程学院, 广东 广州 510642

联系人作者:孙健峰(sunjianfeng@scau.edu.cn)

备注:孙健峰(1983—),男,博士研究生,讲师,主要从事激光快速成型等方面的研究。

【1】Song Changhui, Yang Yongqiang, Ye Ziheng, et al.. Development of freeform design and manufacturing based on selective laser melting[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080026.
宋长辉, 杨永强, 叶梓恒, 等. 基于选区激光熔化快速成型的自由设计与制造进展[J]. 激光与光电子学进展, 2013, 50(8): 080026.

【2】Wang Di, Liu Ruicheng, Yang Yongqiang. Clearance design and process optimization of non-assembly mechanisms fabricated by selective laser melting[J]. Chinese J Lasers, 2014, 41(2): 0203004.
王迪, 刘睿诚, 杨永强. 激光选区熔化成型免组装机构间隙设计及工艺优化[J]. 中国激光, 2014, 41(2): 0203004.

【3】Mai Shuzhen, Yang Yongqiang, Wang Di. Study on surface morphology and roughness variation of NiCr alloy curved surface manufactured by selective laser melting[J]. Chinese J Lasers, 2015, 42(12): 1203004.
麦淑珍, 杨永强, 王迪. 激光选区熔化成型NiCr合金曲面表面形貌及粗糙度变化规律研究[J]. 中国激光, 2015, 42(12): 1203004.

【4】Barbas A, Bonnet A S, Lipinski P. Development and mechanical characterization of porous titanium bone substitutes[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9(3): 34-44.

【5】Sun J F, Yang Y Q, Wang D. Mechanical properties of regular hexahedral lattice structure formed by selective laser melting[J]. Laser Physics, 2013, 23(6): 066101.

【6】Pattanayak D K, Fukuda A, Matsushita T, et al.. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments[J]. Acta Biomaterialia, 2011, 7(3): 1398-1406.

【7】Sun J F, Yang Y Q, Wang D. Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting[J]. Advances in Mechanical Engineering, 2012, 2012(9): 742-760.

【8】Marcua T, Todeab M, Gligora I, et al.. Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications[J]. Applied Surface Science, 2012, 258(7): 3276-3282.

【9】Bertol L S, Júnior W K, da Silva F P, et al.. Medical design: Direct metal laser sintering of Ti-6Al-4V [J]. Materials & Design, 2010, 31(8): 3982-3988.

【10】Amato K N, Gaytan S M, Murr L E, et al.. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J]. Acta Materialia, 2012, 60(5): 2229-2239.

【11】Siddique S, Imran M, Rauer M, et al.. Computed tomography for characterization of fatigue performance of selective laser melted parts [J]. Materials & Design, 2015, 83(6): 661-669.

【12】Sun J F, Yang Y Q, Wang D. Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting[J]. Materials & Design, 2013, 49(1): 545-252.

【13】Qiu C, Panwisawas C, Ward M, et al.. On the role of melt ow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia, 2015, 96: 72-79.

【14】Vilaro T, Colinb C, Bartout J D, et al.. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy[J]. Materials Science and Engineering: A, 2012, 534(1): 446-451.

【15】Doroshenko M E, Elínkov H, ulc J J, et al.. Laser properties of FeCrZn1-xMgxSe crystal for tunable mid-infrared laser sources[J]. Laser Physics Letters, 2012, 9(4): 301-305.

【16】Sun J F, Yang Y Q, Wang D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method[J]. Opticsand Laser Technology, 2013, 49(12): 118-124.

【17】Song B, Dong S, Zhang B, et al.. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J]. Materials & Design, 2012, 35: 120-125.

【18】Cao S N, Gu D D. Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: Relation of densification, microstructures and performance[J]. Journal of Materials Research, 2015, 30(23): 3616-3628.

【19】Dadbakhsh S, Hao L, Jerrard P G E, et al.. Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted Al/Fe2O3 powder mixture[J]. Powder Technology, 2012, 231: 112-121.

【20】Marimuthu S, Triantaphyllou A, Antar M, et al.. Laser polishing of selective laser melted components[J]. International Journal of Machine Tools and Manufacture, 2015, 95(5): 97-104.

【21】ISO/TC. Geometrical Product Specifications (GPS): Surface texture: Profile method:Terms, definitions and surface texture parameters: ISO 4287: 1997[S]. 1996-12-01.

【22】Pitts D, Sissom L. Heat transfer[M]. Beijing: Science Press, 2002.

【23】Christian J W. Theory of transformations in metals and alloys[M]. Pergamon: Oxford, 2002.

【24】Nishiyama Z, Fine M E, Meshii M, et al.. Martensitic transformation[M]. New York: Academic Press, 1978.

【25】Sun S D, Zong Y Y, Shan D B, et al.. Hot deformation behavior and microstructure evolution of TC4 titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(11): 2181-2184.

【26】Poondla N, Srivatsan T S, Patnaik A, et al.. A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti-6Al-4Vi[J]. Journal of Alloys and Compounds, 2009, 486(1-2): 162-167.

【27】Liang Z D, Wang F. Modern physical test technology[M]. Beijing: Metallurgical Industry Press, 2003.

【28】Amaya-Vazquez M R,Snchez-Amaya J M, Boukha Z, et al.. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser[J]. Corrosion Science, 2012, 56(3): 36-48.

引用该论文

Sun Jianfeng,Yang Yongqiang,Yang Zhou. Study on Surface Roughness of Selective Laser Melting Ti6Al4V Based on Powder Characteristics[J]. Chinese Journal of Lasers, 2016, 43(7): 0702004

孙健峰,杨永强,杨洲. 基于粉末特性的选区激光熔化Ti6Al4V表面粗糙度研究[J]. 中国激光, 2016, 43(7): 0702004

被引情况

【1】李俊峰,魏正英,卢秉恒. 钛及钛合金激光选区熔化技术的研究进展. 激光与光电子学进展, 2018, 55(1): 11403--1

【2】万乐,王思琦,张晓伟,蒋业华. 基于分区扫描的选区激光熔化钛合金的成形质量. 激光与光电子学进展, 2018, 55(9): 91401--1

【3】马英怡,刘玉德,石文天,王朋,祁斌,杨锦,韩冬. 扫描速度对选区激光熔化316L不锈钢粉末成形缺陷及性能的影响. 激光与光电子学进展, 2019, 56(10): 101403--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF