首页 > 论文 > 红外与激光工程 > 45卷 > 6期(pp:621001--1)

超快激光制备金属表面微纳米抗反射结构进展

Progress on ultrafast laser fabricating metal surface micro-nano antireflection structures

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

材料表面抗反射性能在太阳能利用、光电子产品、红外传感和成像、军事隐身、以及航空航天等领域均具有重要应用价值。文中对材料表面抗反射特性的重要用途、人工实现路径、表面抗反射结构的研究现状及存在的问题等做了详细的论述。目前, 国内外学者已经利用碳纳米管涂层和硅表面针状纳米结构实现了优异的超宽波谱抗反射性能。但迄今为止, 金属表面微纳米结构的抗反射能力仍有很大的改善空间。作者所在的清华大学材料学院激光加工研究团队运用新一代高功率高频率超快激光, 在金属表面制备出多种类型的特征微纳米结构, 对其抗反射性能进行系统研究, 实现了紫外-可见、紫外-近红外、紫外-中红外与紫外-远红外分别为2%、6%、5%和8%的超宽光谱超低反射率, 并且在0~60°入射角度范围内无明显变化。进一步在微纳米结构基础上发展了“宏-微纳-纳米线”多级多尺度复合结构, 在16~17 μm波长处的总反射率低至0.6%, 在14~18 μm波长处总反射率不超过3%。上述优异超宽光谱抗反射性能预期具有良好应用前景。

Abstract

Surface antireflection properties are of great value in many fields including solar utilization, optoelectronic products, infrared sensing/imaging, stealth, aerospace technologies, etc. Here, the applications, the artificial realization routines of surface antireflection properties were summarized, as well as the state of the art in the surface antireflection structures. Currently, scientists have achieved ultra-broad-band antireflection performances through carbon nanotube coatings and silicon nanotip array structures. However, there is still much room for the improvement of the antireflection properties of metal surface micro/nano structures. Based on the next generation high power high repetition rate ultrafast laser system, the Laser Materials Processing Research Grouop in Tsinghua University has successfully fabricated diverse metal surface micro-nano structures and conducted systematic research on their antireflection properties. The average reflectance of metal surfaces in the UV-VIS, UV-NIR, UV-MIR, and UV-FIR regions are reduced down to around 2%, 6%, 5%, and 8%, respectively, exhibiting ultra-broad-band highly effective antireflection properties. Besides, these antireflection performances show little change within the incident angle range of 0-60°. Further, "macro-micronano-nanowire" hierarchical structures are also developed, reaching an ultralow total reflectance of 0.6% at the infrared wavelength around 16-17 μm and keeping steadily below 3% over a broad band of 14-18 μm. The outstanding ultra-broad-band spectrum antireflection properties are anticipated to have good prospects in various applications in future.

广告组6 - 调制器
补充资料

中图分类号:TN249

DOI:10.3788/irla201645.0621001

所属栏目:先进光学材料

基金项目:国家自然科学基金(51210009, 51575309); 国家 973课题(2011CB013000)

收稿日期:2015-11-10

修改稿日期:2015-12-12

网络出版日期:--

作者单位    点击查看

范培迅:清华大学 材料学院 激光材料加工研究中心, 北京 100084
钟敏霖:清华大学 材料学院 激光材料加工研究中心, 北京 100084

联系人作者:范培迅(fpx@tsinghua.edu.cn)

备注:范培迅(1987-), 男, 博士, 主要从事激光成形加工及激光微纳制造方面的研究。

【1】Lee L P, Szema R. Inspirations from biological optics for advanced photonic systems[J]. Science, 2005, 310: 1148-1150.

【2】Tsui K H, Lin Q F, Chou H T, et al. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics[J]. Adv Mater, 2014, 26: 2805-2811.

【3】Weng B, Qiu J, Yuan Z, et al. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings[J]. Appl Phys Lett, 2014, 104: 021109.

【4】Betts D B, Clarke F J J, Cox L J, et al. Infrared reflection properties of five types of black coating for radiometric detectors[J]. J Phys E: Sci Instrum, 1985, 18: 689-696.

【5】Nelms N, Dowson J. Goldblack coating for thermal infrared detectors[J]. Sens Actuator A-Phys, 2005, 120: 403-407.

【6】Corrigan T D, Park D H, Drew H D, et al. Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers[J]. Appl Optics, 2012, 51(8): 1109-1114.

【7】Brown R J C, Brewer P J, Milton M J T. The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces[J]. J Mater Chem, 2002, 12: 2749-2754.

【8】Xi J Q, Schubert M F, Kim J K, et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection[J]. Nat Photonics, 2007, 1: 176-179.

【9】Yang Z P, Ci L, Bur J A, et al. Experimental observation of an extremely dark material made by a low-density nanotube array[J]. Nano Lett, 2008, 8(2): 446-451.

【10】Mizuno K, Ishii J, Kishida H, et al. A black body absorber from vertically aligned single-walled carbon nanotubes[J]. PNAS, 2009, 106(15): 6044-6047.

【11】Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Appl Phys Lett, 2001, 78(13): 1850-1852.

【12】Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Appl Phys Lett, 1998, 73(12): 1673-1675.

【13】Huang Y F, Chattopadhyay S, Jen Y J, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nat Nanotechnol, 2007, 2: 770-774.

【14】Song Y M, Bae S Y, Yu J S, et al. Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer[J]. Opt Lett, 2009, 34(11): 1702-1704.

【15】Chiu C H, Yu P, Kuo H C, et al. Broadband and omnidirectional antireflection employing disordered GaN nanopillars[J]. Opt Express, 2008, 16(12): 8748-8754.

【16】Teperik T V, García de Abajo F J, Borisov A G. Omnidirectional absorption in nanostructured metal surfaces[J]. Nat Photonics, 2008, 2: 299-301.

【17】Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nat Commun, 2011, 2: 517.

【18】Tang G, Hourd A C, Abdolvand A. Nanosecond pulsed laser blackening of copper[J]. Appl Phys Lett, 2012, 101: 231902.

【19】Vorobyev A Y, Guo C. Femtosecond laser blackening of platinum[J]. J Appl Phys, 2008, 104: 053516.

【20】Vorobyev A Y, Topkov A N, Gurin O V, et al. Enhanced absorption of metals over ultrabroad electromagnetic spectrum[J]. Appl Phys Lett, 2009, 95: 121106.

【21】Fan P X, Zhong M L, Li L, et al. Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser[J]. J Appl Phys, 2013, 114: 083518.

【22】Fan P X, Zhong M L, Li L, et al. Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles[J]. J Appl Phys, 2014, 115: 124302.

【23】Fan P X, Zhong M L, Lin C, et al. Sequential colorization of steel surface by ps laser texturing[C]//32nd International Congress on Applications of Lasers and Electro-Optics, ICALEO, 2013: 700-705.

【24】Long J Y, Fan P X, Zhong M L, et al. Superhydrophobic and colorful copper surfaces fabricated bypicosecond laser induced periodic nanostructures[J]. Appl Surf Sci, 2014, 311: 461-467.

【25】Fan P X, Zhong M L, Bai B F, et al. Tuning the optical reflection property of metal surfaces viamicro-nano particle structures fabricated by ultrafast laser[J]. Appl Surf Sci, 2015, 359: 7-13.

【26】Fan P X, Zhong M L, Li L, et al. Rapid fabrication of surface micro/nano structures with enhanced broadband absorption on Cu by picosecond laser[J]. Opt Express, 2013, 21(10): 11628-11637.

【27】Fan P X, Long J Y, Jiang D F, et al. Study on ultrafast laser fabrication of UV-FIR ultra-broad-band antireflection surface micro-nano structures and their properties[J]. Chinese J Lasers, 2015, 42(8): 0806005. (in Chinese)

【28】Fan P X, Bai B F, Long J Y, et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Lett, 2015, 15: 5988-5994.

【29】Gong D W, Long J Y, Fan P X, et al. Thermal stability of micro-nano structures and superhydrophobicity of polytetrafluoroethylene films formed by hot embossing via apicosecond laser ablated template[J]. Appl Surf Sci, 2015, 331: 437-443.

【30】Lin C, Zhong M L, Fan P X, et al. Picosecond laser fabrication of large-area surface micro-nano lotus-leaf structures and replication of superhydrophobic silicone rubber surfaces[J]. Chinese J Lasers, 2014, 41(9): 0903007. (in Chinese)

引用该论文

Fan Peixun,Zhong Minlin. Progress on ultrafast laser fabricating metal surface micro-nano antireflection structures[J]. Infrared and Laser Engineering, 2016, 45(6): 0621001

范培迅,钟敏霖. 超快激光制备金属表面微纳米抗反射结构进展[J]. 红外与激光工程, 2016, 45(6): 0621001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF