首页 > 论文 > 中国光学 > 9卷 > 4期(pp:423-431)

基于双边纹理滤波的图像细节增强方法

Image detail enhancement method based on multi-scale bilateral texture filter

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了实现图像的细节增强, 特别是纹理细节增强, 同时尽可能保持图像的结构完整, 提出了一种基于双边纹理滤波的图像多尺度分解方法。首先, 对图像进行多尺度双边纹理滤波分解, 分别得到一幅基本图像和一系列细节纹理图像。接着, 类似于小波增强方法, 对细节图像采用多尺度自适应增强方法, 得到一系列增强后的纹理细节图像。最后, 将基本图像和增强后细节图像相加, 重构出最后的增强图像。实验结果表明: 本文提出的增强方法能够在突出边缘的同时, 较好地增强图像中的纹理细节信息。将基于双边纹理滤波的多尺度分解引入图像增强, 能更好地体现图像纹理细节特征, 为增强图像提供更加丰富的信息。

Abstract

In order to realize image enhancement, especially in texture details, and preserve the structure integrity of image, we propose a multi-scale bilateral texture filter based image decomposition method and a multi-scale adaptive enhancement strategy. First, we decompose the source images by multi-scale bilateral texture filter, and a structure image and a series of detailed images are obtained. Then, we adopt a multi-scale adaptive enhancement for the detailed images. Finally, the enhanced image can be reconstructed by adding the structure based image and the enhanced detailed images. Experiments show that the presented method can enhance the structure information and detailed information in the enhanced image. The proposed method can better reflect the image details, and provide more abundant texture information when introducing the multi-scale bilateral texture filter decomposition into image enhancement.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP394.1

DOI:10.3788/co.20160904.0423

所属栏目:信息光学

基金项目:国家自然科学基金资助项目(No.61401425)

收稿日期:2016-02-26

修改稿日期:2016-04-19

网络出版日期:--

作者单位    点击查看

郝志成:中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
吴川:中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
杨航:中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
朱明:中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033

联系人作者:杨航(yhang3109@163.com)

备注:郝志成(1978—),男,辽宁营口人,副研究员,2007 年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事信号检测、数字图像处理、模式识别方面的研究。

【1】章毓晋.图像处理和分析(第一版)[M].北京: 清华大学出版社, 1999.
ZHANG Y J. Image Processing and Analysis(First Edition)[M]. Beijing: Tsinghua University Press.(in Chinese)

【2】LINDE O, BRETZNER L.Local histogram based descriptors for recognition[C]. 4th International Conference on Computer Vision Theory and Applications, VISAPP, Feb.5-8,2009.

【3】CHAN H Y, ZHU H,LAM F K. Image contrast enhancement by constrained local histogram equalization[J]. Computer Vision and Image Understanding,1999,73(2): 281-190.

【4】朱瑞飞,贾宏光, 王超, 等.应用参数化对数模型增强图像细节及对比度[J].光学 精密工程,2014,22(4): 1064-1070.
ZHU R F,JIA H G, WANG CH,et al.. Enhacement of image detail and contrast by parameterized logarithmic framework[J]. Opt. Precision Eng.,2014,22(4): 1064-1070.(in Chinese)

【5】赵文达,续志军,赵建.基于梯度直方图变换增强红外图像的细节[J].光学 精密工程,2014,22(7): 1962-1968.
ZHAO W D,XU ZH J,ZHAO J. Enhancement of infrared image details based on gradient histogram transform[J]. Opt. Precision Eng.,2014,22(7): 1962-1968.(in Chinese)

【6】周妍,李庆武,霍冠英.基于非下采样Contourlet变换系数直方图匹配的自适应图像增强[J].光学 精密工程,2014,22(8): 2214-2222.
ZHOU Y,LI Q W,HUO G Y. Adaptive image enhancement based on NSCT coefficient histogram matching[J]. Opt. Precision Eng.,2014,22(8): 2214-2222.(in Chinese)

【7】陈莹, 朱明.多子直方图均衡微光图像增强及FPGA实现[J].中国光学, 2014, 7(2): 225-233.
CHEN Y,ZHU M. Multiple sub-histogram equalization low light level image enhancement and realization on FPGA[J]. Chinese Optics,2014, 7(2): 225-233.(in Chinese)

【8】王静轩,尹传历.基于DSP和FPGA的嵌入式实时图像增强系统[J].液晶与显示,2013,28(3): 459-463.
WANG J X,YIN CH L. Embedded color image enhancement system based on DSP and FPGA[J]. Chinese J. Liquid Crystals and Displays, 2013,28(3): 459-463(in Chinese).

【9】赵建,赵凡,曲锋.彩色图像的FPGA实时增强系统实现[J].液晶与显示, 2014,29(4): 629-636.
ZHAO J,ZHAO F,QU F. Implement of system for color image enhancement in real-time based on FPGA[J]. Chinese J. Liquid Crystals and Displays,2014,29(4): 629-636.(in Chinese)

【10】李毅,张云峰,年轮,等.尺度变化的Retinex红外图像增强[J].液晶与显示,2016,31(1): 104-111.
LI Y,ZHANG Y F,NIAN L,et al.. Infrared image enhancement method based on scale varies Retinex theory[J]. Chinese J. Liquid Crystals and Displays,2016,31(1): 104-111.(in Chinese)

【11】MALLAT S G. Multifrequency channel decompositions of images and wavelet models[J]. IEEE,1989,37: 2091-2110.

【12】CANDES E,DEMANET L,DONONHO D,et al.. Fast discrete curvelet transform[J]. Multiscale Modeling Simulation,2006,5(3): 861-899.

【13】BROWN T J. An adaptive strategy for wavelet based image enhancement[C]. Proceeding of Conference on Machine Vision and Image Processing Conference. Belfast Irish,IEEE,2000: 67-81.

【14】XU T, WANG C. Fuzzy degree of image based on fuzzy mathematics[J]. Computer Graphics,2002(8): 747-749.

【15】ANZUETO-RIOS A,MORENO-CADENAS J A,GOMEZ-CASTANEDA F. Fuzzy technique for image enhancement using B-spline[J]. IEEE,2009,14(8): 347-349.

【16】LIEN T. Predict soil texture distributions using an artificial neural network model[J]. Computers and Electronics in Agriculture,2009,3(37): 41-42.

【17】HASHEMI S. An image enhancement method based on genetic algorithm[C]. ICDIP,Piscataway,NJ,USA,7-9 March,2009: 107-110.

【18】CHUNG K L,YANG W J,YAN W M. Efficient edge-preserving algorithm for color contrast enhancement with application to color image segmentation[J]. J. Vis. Commun. Image Represent.,2008,19(5): 299-310.

【19】CHEN C,WANG C D. A simple edge-preserving filtering technique for constructing multi-resolution systems of images[J]. Pattern Recognit. Lett.,1999,20(5): 495-506.

【20】PERONA P,MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE,1990,12(7): 629-639.

【21】TOMASI C,MANDUCHI R. Bilateral filtering for gray and color images[C]. Proc. Int. Conf. on Computer Vision,Bombay,India,January,1998: 839-846.

【22】RBMAN Z,FATTAL R,LISCHINSKI D,et al.. Edge-preserving decompositions for multi-scale tone and detail manipulation[J]. ACM Trans. Graph.,2008,27(3): 1-10.

【23】XU L,LU C,XU Y,et al.. Image smoothing via L0 gradient minimization[J]. ACM Trans. Graph.,2011,30(6): 174-12.

【24】ZHANG Z,BLUM R. A categorization of multiscale decomposition- based image fusion schemes with a performance study for a digital camera application[J]. IEEE,1999,87(8): 1315-1326.

【25】PIELLA G. A general framework for multiresolution image fusion: from pixels to regions[J]. Inf. Fusion,2003,4(4): 259-280.

【26】BURT P J,ADELSON E H. The Laplacian pyramid as a compact image code[J]. IEEE,1983,31(4): 532-540.

【27】CHO H,LEE H,KANG H,et al.. Bilateral Texture Filtering[J]. ACM Transactions on Graphics, 2014, 33(4): 128.

【28】XU L,YAN Q,XIA Y,et al.. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6): 139.

【29】ZHANG Z B,MA S L,HAN X. Multiscale feature extraction of finger-vein patterns based on curvelets and local interconnection structure neural network[J]. ICPR,2006(4): 145-148.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF