首页 > 论文 > 中国激光 > 43卷 > 8期(pp:800001--1)

超快激光制备具有特殊浸润性的仿生表面

Ultrafast Laser Fabricated Bio-Inspired Surfaces with Special Wettability

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

具有特殊浸润性的仿生表面包括超亲水表面以及各种类型的超疏水表面,这些表面具有自清洁、抗结冰、减阻等性能,近年来受到国际学术界的广泛关注。随着超快激光的快速发展,各种类型的特殊浸润性表面可通过超快激光制备得到。与其他方法相比,超快激光表面处理技术具有简单、灵活、可控的特点。结合本课题组在该领域的研究工作,综述了这一研究领域的研究成果。

Abstract

Bio-inspired surfaces with special wettability include superhydrophilic surfaces and various kinds of superhydrophobic surfaces. Since these surfaces possess the properties as self-cleaning, anti-icing, anti-drag, and so on, they have attracted tremendous attentions of international academia in recent years. With the rapid development of ultrafast lasers, various surfaces with special wettability can be fabricated by means of the ultrafast laser. Compared to other methods, the ultrafast laser surface treatment technology is simple, flexible and controllable. The research progress in combination with the research achievements in our group in this field is reviewed.

投稿润色
补充资料

中图分类号:O647

DOI:10.3788/cjl201643.0800001

所属栏目:综述

基金项目:国家自然科学基金(51210009,51575309)

收稿日期:2016-03-10

修改稿日期:2016-04-07

网络出版日期:--

作者单位    点击查看

龙江游:清华大学材料学院激光材料加工研究中心, 北京 100084
范培迅:清华大学材料学院激光材料加工研究中心, 北京 100084
龚鼎为:清华大学材料学院激光材料加工研究中心, 北京 100084
张红军:清华大学材料学院激光材料加工研究中心, 北京 100084
钟敏霖:清华大学材料学院激光材料加工研究中心, 北京 100084

联系人作者:龙江游(longjy12@mails.tsinghua.edu.cn)

备注:龙江游(1989—),男,博士研究生,主要从事超快激光加工方面的研究。

【1】Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.

【2】Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.

【3】Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34.

【4】Feng L, Zhang Y N, Xi J M, et al. Petal effect: A superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119.

【5】Yang S, Ju J, Qiu Y C, et al. Peanut leaf inspired multifunctional surfaces[J]. Small, 2014, 10(2): 294-299.

【6】Wu D, Wang J N, Wu S Z, et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 2011, 21(15): 2927-2932.

【7】Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2): 178-182.

【8】Drelich J, Chibowski E, Meng D D, et al. Hydrophilic and superhydrophilic surfaces and materials[J]. Soft Matter, 2011, 7(21): 9804-9828.

【9】Yao X, Song Y L, Jiang L. Applications of bio-inspired special wettable surfaces[J]. Advanced Materials, 2011, 23(6): 719-734.

【10】Liu K S, Jiang L. Bio-inspired self-cleaning surfaces[J]. Annual Review of Materials Research, 2012, 42(1): 231-263.

【11】Wang S T, Liu K S, Yao X, et al. Bioinspired Surfaces with Superwettability: New insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293.

【12】Liu K S, Jiang L. Metallic surfaces with special wettability[J]. Nanoscale, 2011, 3(3): 825-838.

【13】Zhang P, Lv F Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications[J]. Energy, 2015, 82: 1068-1087.

【14】Feng J, Qin Z Q, Yao S H. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces[J]. Langmuir, 2012, 28(14): 6067-6075.

【15】Chen F, Zhang D S, Yang Q, et al. Bioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6777-6792.

【16】Razi S, Mollabashi M, Madanipour K. Laser processing of metallic biomaterials: An approach for surface patterning and wettability control[J]. European Physical Journal Plus, 2015, 130(12) :1-12.

【17】Zhang D S, Chen F, Yang Q, et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4905-4912.

【18】Yong J L, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2014, 2(15): 5499-5507.

【19】Long J Y, Zhong M L, Zhang H J, et al. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J]. Journal of Colloid and Interface Science, 2015, 441: 1-9.

【20】Long J Y, Fan P X, Zhong M L, et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures[J]. Applied Surface Science, 2014, 311: 461-467.

【21】Long J Y, Fan P X, Gong D W, et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9858-9865.

【22】Gong D W, Long J Y, Fan P X, et al. Thermal stability of micro-nano structures and superhydrophobicity of polytetrafluoroethylene films formed by hot embossing via a picosecond laser ablated template[J]. Applied Surface Science, 2015, 331: 437-443.

【23】Long J Y, Zhong M L, Fan P X, et al. Wettability conversion of ultrafast laser structured copper surface[J]. Journal of Laser Applications, 2015, 27(S2):S29107.

【24】Long Jiangyou, Wu Yingchao, Gong Dingwei, et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese J Lasers, 2015, 42(7): 0706002.
龙江游, 吴颖超, 龚鼎为, 等. 飞秒激光制备超疏水铜表面及其抗结冰性能[J]. 中国激光, 2015, 42(7): 0706002.

【25】Lin Cheng, Zhong Minlin, Fan Peixun, et al. Picosecond laser fabrication of large-area surface micro-nano lotus-leaf structures and replication of superhydrophobic silicone rubber surfaces[J]. Chinese J Lasers, 2014, 41(9): 0903007.
林澄, 钟敏霖, 范培迅, 等. 皮秒激光制备大面积荷叶结构及其硅橡胶超疏水性压印研究[J]. 中国激光, 2014, 41(9): 0903007.

【26】Long J Y, Pan L, Fan P X, et al. Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser[J]. Langmuir, 2016, 32(4): 1065-1072.

【27】Vogler E A. Water and the acute biological response to surfaces[J]. Journal of Biomaterials Science-Polymer Edition, 1999, 10(10): 1015-1045.

【28】Zhao Z G. Applied Colloid and Interface Science[M]. Beijing: Chemical Industry Press, 2008: 114-116.
赵振国. 应用胶体与界面化学[M]. 北京: 化学工业出版社, 2008: 114-116.

【29】Gao X F, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2007, 19(17): 2213.

【30】Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39(8): 3240-3255.

【31】Cai Y, Lin L, Xue Z X, et al. Filefish-inspired surface design for anisotropic underwater oleophobicity[J]. Advanced Functional Materials, 2014, 24(6): 809-816.

【32】Eral H B, T Mannetje D J C M, Oh J M. Contact angle hysteresis: A review of fundamentals and applications[J]. Colloid and Polymer Science, 2013, 291(2): 247-260.

【33】Wang S T, Jiang L. Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19(21): 3423-3424.

【34】Ahmmed K M T, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 2014, 5(4): 1219-1253.

【35】Barberoglou M, Zorba V, Stratakis E, et al. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Applied Surface Science, 2009, 255(10): 5425-5429.

【36】Samarasekera C, Tan B, Venkatakrishnan K. Flower-like na2o nanotip synthesis via femtosecond laser ablation of glass[J]. Nanoscale Research Letters, 2012, 7: 404.

【37】Liang F, Lehr J, Danielczak L, et al. Robust non-wetting PTFE surfaces by femtosecond laser machining[J]. International Journal of Molecular Sciences, 2014, 15(8): 13681-13696.

【38】Li X H, Yuan C H, Yang H D, et al. Morphology and composition on Al surface irradiated by femtosecond laser pulses[J]. Applied Surface Science, 2010, 256(13): 4344-4349.

【39】Wang Z K, Zheng H Y, Lim C P, et al. Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation[J]. Applied Physics Letters, 2009, 95(11): 111110.

【40】Younkin R, Carey J E, Mazur E, et al. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses[J]. Journal of Applied Physics, 2003, 93(5): 2626-2629.

【41】Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673-1675.

【42】Yong J L, Chen F, Yang Q, et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communications, 2015, 51(48): 9813-9816.

【43】Vorobyev A Y, Guo C L. Water sprints uphill on glass[J]. Journal of Applied Physics, 2010, 108(12): 123512.

【44】Vorobyev A Y, Guo C L. Making human enamel and dentin surfaces superwetting for enhanced adhesion[J]. Applied Physics Letters, 2011, 99(19): 193703.

【45】Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 2009, 25(8): 4821-4827.

【46】van den Brand J, van Gils S, Beentjes P C J, et al. Ageing of aluminium oxide surfaces and their subsequent reactivity towards bonding with organic functional groups[J]. Applied Surface Science, 2004, 235(4): 465-474.

【47】Sondag A H M, Raas M C, van Velzen P N T. Contamination of aluminium oxide surfaces in ambient air investigated by FTIR MSR and TOF SIMS - chemisorption of aliphatic carboxylic acids[J]. Chemical Physics Letters, 1989, 155(4-5): 503-510.

【48】Strohmeier B R. Improving the wettability of aluminum foil with oxygen plasma treatments[J]. Journal of Adhesion Science and Technology, 1992, 6(6): 703-718.

【49】Takeda S, Fukawa M, Hayashi Y, et al. Surface OH group governing adsorption properties of metal oxide films[J]. Thin Solid Films, 1999, 339(1-2): 220-224.

【50】Gentleman M M, Ruud J A. Role of hydroxyls in oxide wettability[J]. Langmuir, 2010, 26(3): 1408-1411.

【51】Wang G Y, Zhang T Y. Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface[J]. Journal of Colloid and Interface Science, 2012, 377: 438-441.

【52】Geng W Y, Hu A M, Li M. Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro-nano cones array[J]. Applied Surface Science, 2012, 263: 821-824.

【53】Chang F M, Cheng S L, Hong S J, et al. Superhydrophilicity to superhydrophobicity transition of CuO nanowire films[J]. Applied Physics Letters, 2010, 96(11): 114101.

【54】Li Z F, Zheng Y J, Zhao J, et al. Wettability of atmospheric plasma sprayed Fe, Ni, Cr and their mixture coatings[J]. Journal of Thermal Spray Technology, 2012, 21(2): 255-262.

【55】Nunes B, Serro A P, Oliveira V, et al. Ageing effects on the wettability behavior of laser textured silicon[J]. Applied Surface Science, 2011, 257(7): 2604-2609.

【56】Liu T Y, Kim C J. Turning a surface super-repellent even to completely wetting liquids[J]. Science, 2014, 346(6213): 1096-1100.

【57】Cao L L, Hu H H, Gao D. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials[J]. Langmuir, 2007, 23(8): 4310-4314.

【58】Cardoso M R, Tribuzi V, Balogh D T, et al. Laser microstructuring for fabricating superhydrophobic polymeric surfaces[J]. Applied Surface Science, 2011, 257(8): 3281-3284.

【59】Yoon T O, Shin H J, Jeoung S C, et al. Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification[J]. Optics Express, 2008, 16(17): 12715-12725.

【60】De Marco C, Eaton S M, Suriano R, et al. Surface Properties of femtosecond laser ablated PMMA[J]. ACS Applied Materials & Interfaces, 2010, 2(8): 2377-2384.

【61】Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 2008, 20(21): 4049-4054.

【62】Saltuganov P N, Ionin A A, Kudryashov S I, et al. Fabrication of superhydrophobic coating on stainless steel surface by femtosecond laser texturing and chemisorption of an hydrophobic agent[J]. Journal of Russian Laser Research, 2015, 36(1): 81-85.

【63】Boinovich L B, Domantovskiy A G, Emelyanenko A M, et al. Femtosecond laser treatment for the design of electro-insulating superhydrophobic coatings with enhanced wear resistance on glass[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2080-2085.

【64】Fadeeva E, Truong V K, Stiesch M, et al. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation[J]. Langmuir, 2011, 27(6): 3012-3019.

【65】Rukosuyev M V, Lee J, Cho S J, et al. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation[J]. Applied Surface Science, 2014, 313: 411-417.

【66】Jagdheesh R. Fabrication of a superhydrophobic Al2O3 surface using picosecond laser pulses[J]. Langmuir, 2014, 30(40): 12067-12073.

【67】Tao H Y, Song X W, Hao Z Q, et al. One-step formation of multifunctional nano- and microscale structures on metal surface by femtosecond laser[J]. Chinese Optics Letters, 2015, 13(6): 061402.

【68】Baldacchini T, Carey J E, Zhou M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 2006, 22(11): 4917-4919.

【69】Wu B, Zhou M, Li J, et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 2009, 256(1): 61-66.

【70】Moradi S, Kamal S, Englezos P, et al. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity[J]. Nanotechnology, 2013, 24(41): 415302.

【71】Ahsan M S, Dewanda F, Lee M S, et al. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses[J]. Applied Surface Science, 2013, 265: 784-789.

【72】Xi Jinming. Fabrication and study of superhydrophobic and superamphiphobic materials[D]. Beijing: Graduate School of Chinese Academy of Sciences (National Center for Nanoscience and Technology), 2008.
郗金明. 超疏水、超双疏材料的制备与研究[D]. 北京: 中国科学院研究生院(国家纳米科学中心), 2008.

【73】Yan B, Tao J G, Pang C, et al. Reversible UV-light-induced ultrahydrophobic-to-ultrahydrophilic transition in an α-Fe2O3 nanoflakes film[J]. Langmuir, 2008, 24(19): 10569-10571.

【74】Wang S T, Feng X J, Yao J N, et al. Controlling wettability and photochromism in a dual-responsive tungsten oxide film[J]. Angewandte Chemie-International Edition, 2006, 45(8): 1264-1267.

【75】Liu H, Feng L, Zhai J, et al. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity[J]. Langmuir, 2004, 20(14): 5659-5661.

【76】Sun R D, Nakajima A, Fujishima A, et al. Photoinduced surface wettability conversion of ZnO and TiO2 thin films[J]. Journal of Physical Chemistry B, 2001, 105(10): 1984-1990.

【77】Frysali M A, Papoutsakis L, Kenanakis G, et al. Functional surfaces with photocatalytic behavior and reversible wettability: ZnO coating on silicon spikes[J]. The Journal of Physical Chemistry C, 2015, 119(45): 25401-25407.

【78】Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.

【79】Yong J L, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. Journal of Physical Chemistry C, 2013, 117(47): 24907-24912.

【80】Zhang D S, Chen F, Yang Q, et al. Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femotosecond laser[J]. Soft Matter, 2011, 7(18): 8337-8342.

【81】Chen F, Zhang D S, Yang Q, et al. Anisotropic wetting on microstrips surface fabricated by femtosecond laser[J]. Langmuir, 2011, 27(1): 359-365.

【82】Bohn H F, Federle W. Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39): 14138-14143.

【83】Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials[J]. Advanced Materials, 2008, 20(15): 2842-2858.

【84】Yong J L, Yang Q, Chen F, et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion[J]. Applied Surface Science, 2014, 288: 579-583.

【85】Wu S Z, Wu D, Yao J, et al. One-step preparation of regular micropearl arrays for two-direction controllable anisortropic wetting[J]. Langmuir, 2010, 26(14): 12012-12016.

【86】Zuhlke C A, Anderson T P, Li P B, et al. Superhydrophobic metallic surfaces functionalized via femtosecond laser surface processing for long term air film retention when submerged in liquid[C]. SPIE, 2015: 93511D.

【87】Yong J L, Chen F, Yang Q, et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication[J]. Journal of Materials Chemistry A, 2014, 2(23): 8790-8795.

【88】Nayak B K, Caffrey P O, Speck C R, et al. Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing[J]. Applied Surface Science, 2013, 266: 27-32.

【89】Jiang T, Koch J, Unger C, et al. Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces[J]. Applied Physics A, 2012, 108(4): 863-869.

【90】Peng P P, Ke Q P, Zhou G, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science, 2013, 395: 326-328.

【91】Fadeeva E, Truong V K, Stiesch M, et al. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation[J]. Langmuir, 2011, 27(6): 3012-3019.

【92】Truong V K, Webb H K, Fadeeva E, et al. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium[J]. Biofouling, 2012, 28(6): 539-550.

【93】Cunha A, Elie A M, Plawinski L, et al. Femtosecond laser surface texturing of titanium femtosecond laser surface texturing of titanium as a method to reduce the adhesion of staphylococcus aureus and biofilm formation[J]. Applied Surface Science, 2016, 360: 485-493.

【94】George Sajan D, Ladiwala Uma, Thomas John, et al. Deposition and alignment of cells on laser-patterned quartz[J]. Applied Surface Science, 2014, 305: 375-381.

【95】Zhao Y, Luo Y T, Zhu J, et al. Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 11719-11723.

【96】Miljkovic N, Wang E N. Condensation heat transfer on superhydrophobic surfaces[J]. MRS Bulletin, 2013, 38(5): 397-406.

【97】Li C, Wang Z K, Wang P I, et al. Nanostructured copper interfaces for enhanced boiling[J]. Small, 2008, 4(8): 1084-1088.

【98】Kruse C M, Anderson T, WilsonC, et al. Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 82: 109-116.

【99】Anderson T P, Wilson C, Zuhlke C A, et al. Enhancing vapor generation at a liquid-solid interface using micro/nanoscale surface structures fabricated by femtosecond laser surface processing[C]. SPIE, 2015: 93510D.

【100】Proll J, Schmitz B, Niemoller A, et al. Femtosecond laser patterning of lithium-ion battery separator materials: Impact on liquid electrolyte wetting and cell performance[C]. SPIE, 2015: 93511F.

【101】Prll J, Kim H, Pique A, et al. Laser-printing and femtosecond-laser structuring of LiMn2O4 composite cathodes for li-ion microbatteries[J]. Journal of Power Sources, 2014, 255: 116-124.

【102】Dorrer C, Ruehe J. Some thoughts on superhydrophobic wetting[J]. Soft Matter, 2009, 5(1): 51-61.

引用该论文

Long Jiangyou,Fan Peixun,Gong Dingwei,Zhang Hongjun,Zhong Minlin. Ultrafast Laser Fabricated Bio-Inspired Surfaces with Special Wettability[J]. Chinese Journal of Lasers, 2016, 43(8): 0800001

龙江游,范培迅,龚鼎为,张红军,钟敏霖. 超快激光制备具有特殊浸润性的仿生表面[J]. 中国激光, 2016, 43(8): 0800001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF