首页 > 论文 > 中国激光 > 43卷 > 8期(pp:801004--1)

全光纤多程相位调制的光谱控制研究

Spectrum Control Based on All-Fiber Multi-Pass Phase Modulation Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于全光纤多程相位调制的光谱控制方法,并对其进行了理论模拟和实验研究。理论模拟结果表明,调制次数、调制深度、调制信号形状和宽度以及调制信号和光脉冲的时间同步均会对输出光谱的中心波长、光谱宽度和形状产生影响。在实验上对光谱宽度为0.03 nm的注入信号进行多程相位调制,得到了带宽为2.238 nm的输出光谱,实验结果与理论模拟结果相符合。并从实验上研究了不同相位调制信号波形与输出光谱的对应关系,验证了通过控制调制信号波形进行光谱特性控制的可行性。

Abstract

A method of controlling spectrum based on all-fiber multi-pass phase modulation is demonstrated experimentally and theoretically. Numerical simulation results indicate that modulation times, modulation depth, shape and width of the modulation signal and synchronized precision between optical pulse and modulation signal have influences on the central wavelength, bandwidth as well as the shape of the output spectrum. The input spectrum with bandwidth of 0.03 nm is broadened into 2.238 nm after multi-pass phase modulation, and the experimental results match well with the simulation results. The corresponding relationship between the modulation signal waveforms with different phases and the output spectra is obtained, and the feasibility of the spectral characteristics control is verified.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN247

DOI:10.3788/cjl201643.0801004

所属栏目:激光物理

基金项目:国家自然科学基金(61205103)

收稿日期:2016-03-08

修改稿日期:2016-03-14

网络出版日期:--

作者单位    点击查看

井媛媛:中国科学院上海光学精密机械研究所高功率物理联合实验室, 上海 201800中国科学院大学, 北京 100049
汪小超:中国科学院上海光学精密机械研究所高功率物理联合实验室, 上海 201800
乔治:中国科学院上海光学精密机械研究所高功率物理联合实验室, 上海 201800中国科学院大学, 北京 100049
李玉荣:中国科学院上海光学精密机械研究所高功率物理联合实验室, 上海 201800中国科学院大学, 北京 100049
范薇:中国科学院上海光学精密机械研究所高功率物理联合实验室, 上海 201800

联系人作者:井媛媛(apriljyy@foxmail.com)

备注:井媛媛(1991—),女,硕士研究生,主要从事脉冲光谱控制方面的研究。

【1】Qiu S R, Wolfe J E, Monterrosa A M, et al. Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings[J]. Applied Optics, 2011, 50(9): C373-C381.

【2】Fang Zhiwei, Su Yahui, Wang Chaowei, et al. Analysis and set up of optical system for holographic femtosecond laser processing[J]. Acta Optica Sinica, 2014, 34(2): 0222002.
方致伟, 苏亚辉, 汪超炜, 等. 飞秒激光全息加工光学系统搭建与分析[J]. 光学学报, 2014, 34(2): 0222002.

【3】Maywar D N, Kelly J H, Waxer L J, et al. OMEGA EP high-energy petawatt laser: progress and prospects[C]. Journal of Physics: Conference Series, 2008, 112(3): 032007.

【4】Abulikemu A, Abudurexiti A. Self-magnetic field and proton acceleration in a laser plasma interaction[J]. Laser & Optoelectronics Progress, 2015, 52(2): 021401.
阿不力克木, 阿不都热苏力. 激光等离子体中的自生磁场和质子加速[J]. 激光与光电子学进展, 2015, 52(2): 021401.

【5】Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221.

【6】Maine P, Strickland D, Bado P, et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics, 1988, 24(2): 398-403.

【7】Xu Tingting, Sun Meizhi, Yang Qingwei, et al. Double-line-density grisms for dispersion compensation of ultra-short laser pulses[J]. Acta Optica Sinica, 2013, 33(5): 0532002.
徐婷婷, 孙美智, 杨庆伟, 等. 基于双密度棱栅的新型超短脉冲色散补偿装置[J]. 光学学报, 2013, 33(5): 0532002.

【8】Liu H, Gao C, Tao J, et al. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode[J]. Optics Express, 2008, 16(11): 7888-7893.

【9】Peng Yapei, Jiang Benxue, Fan Jintai, et al. Review of in mid-infrared laser materials directly pumped by laser-diode[J]. Laser & Optoelectronics Progress, 2015, 52(2): 020001.
彭雅珮, 姜本学, 范金太, 等. 激光二极管直接抽运中红外固体激光材料综述[J]. 激光与光电子学进展, 2015, 52(2): 020001.

【10】Galvanauskas A, Blixt P, Tellefsen J A, et al. Hybrid diode-laser fiber-amplifier source of high-energy ultrashort pulses[J]. Optics Letters, 1994, 19(14): 1043-1045.

【11】van Howe J, Lee J H, Xu C. Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking[J]. Optics Letters, 2007, 32(11): 1408-1410.

【12】Kim D S, Arisawa M, Morimoto A, et al. Femtosecond optical pulse generation using quasi-velocity-matched electrooptic phase modulator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 493-499.

【13】Xin R, Zuegel J D. Directly chirped laser source for chirped-pulse amplification[C]. Advanced Solid-State Photonics, 2010, AMD: AMD3.

【14】Guo Yue, Wang Xiaochao, Qiao Zhi, et al. Control of spectrum based on all-fiber multi-pass direct phase modulation[J]. Chinese J Lasers, 2014, 41(9): 0905010.
郭跃, 汪小超, 乔治, 等. 全光纤多程直接相位调制实现光谱控制技术研究[J]. 中国激光, 2014, 41(9): 0905010.

【15】Tian Xiaocheng, Sui Zhan, Huang Zhihua, et al. Periodic linear chirped pulse generation based on direct phase modulation[J]. Acta Physica Sinica, 2013, 62(10): 104216.
田小程, 隋展, 黄志华, 等. 直接相位调制产生周期性线性啁啾脉冲特性研究[J]. 物理学报, 2013, 62(10): 104216.

【16】Wang X, Fan W, Li G, et al. Long-term stable fiber-based picoseconds optical synchronization system in SG-II[J]. Chinese Optics Letters, 2012, 10(s2): s20606.

引用该论文

Jing Yuanyuan,Wang Xiaochao,Qiao Zhi,Li Yurong,Fan Wei. Spectrum Control Based on All-Fiber Multi-Pass Phase Modulation Structure[J]. Chinese Journal of Lasers, 2016, 43(8): 0801004

井媛媛,汪小超,乔治,李玉荣,范薇. 全光纤多程相位调制的光谱控制研究[J]. 中国激光, 2016, 43(8): 0801004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF