首页 > 论文 > 中国激光 > 43卷 > 8期(pp:801007--1)

基于单模光纤的锁模再生放大器

Mode-Locked Regenerative Amplifier Based on Single Mode Fiber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对基于单模光纤的锁模再生放大器(即基于脉冲起振的耗散孤子锁模激光器)的动力学过程进行数值模拟,分析了输出脉冲能量、时域宽度、光谱宽度随入射脉冲在腔内循环次数增加的演化过程。实验中通过插入电光调制器使振荡腔从脉冲起振,阐述了该电光调制器选取脉冲的工作时序,实现了入射脉冲在腔内稳定循环13次;同时,在固定入射脉冲腔内循环2次的前提下,分析了抽运功率对输出光谱的影响,最终输出单脉冲能量为20 nJ,光谱宽度约为60 nm的脉冲。此外,还分析了基于单模光纤的锁模再生放大器输出脉冲能量增长受限的原因。

Abstract

The dynamic evolution of the mode-locked regenerative amplifier based on single mode fiber, which is also called pulse-based start-up dissipative soliton mode-locked laser, is numerically simulated, and the evolutions of the pulse energy, pulse duration, and spectral bandwidth versus the cycling number of the incident pulse in the cavity are analyzed. By using an electro-optic modulator in the cavity, the input pulses can be successfully injected into the cavity for circulation. With the demonstration of the timing sequence of the modulator, the laser runs steadily for 13 roundtrip. Meanwhile, when the circulation roundtrip is fixed at 2, the influence of the pump power on the output spectrum is investigated. The final output laser pulse has a spectral bandwidth of 60 nm and single-shot pulse energy of 20 nJ. Besides, the reason that the output pulse energy is limited in the mode-locked regenerative amplifier based on a single mode fiber is also analyzed.

广告组5 - 光束分析仪
补充资料

中图分类号:TN248

DOI:10.3788/cjl201643.0801007

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金 (61322502,61535009,11274239)、教育部创新团队发展计划(IRT13033)、强场激光物理国家重点实验室开放基金、天津市应用基础与前沿技术研究计划(13JCQNJC01400)

收稿日期:2016-03-01

修改稿日期:2016-04-22

网络出版日期:--

作者单位    点击查看

黄莉莉:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
Logan Wright:康奈尔大学应用与工程物理学院, 伊萨卡 14853, 美国
胡明列:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
Frank Wise:康奈尔大学应用与工程物理学院, 伊萨卡 14853, 美国
王清月:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072

联系人作者:黄莉莉(huanglili@tju.edu.cn)

备注:黄莉莉(1989—),女,博士研究生,主要从事高功率光纤飞秒激光器方面的研究。

【1】Pedersen S, Herek J L, Zewail A H. The validity of the ″diradical″ hypothesis: Direct femtosecond studies of the trasition state structures[J]. Science, 1994, 266(5189): 1359-1364.

【2】Long Xuewen, Bai Jing, Liu Xin, et al. Inscription of waveguides in terbium gallium garnet using femtosecond laser[J]. Acta Optica Sinica, 2014, 34(4): 0432002.
龙学文, 白晶, 刘欣, 等. 飞秒激光在铽镓石榴石中的光刻光波导[J]. 光学学报, 2014, 34(4): 0432002.

【3】Wang Jixiang, Ran Linging, Kong Degui, et al. Microstrucrures on the surface of Si induced by femtosecond laser[J]. Acta Optica Sinica, 2014, 34(s1): s114002.
王积翔, 冉玲苓, 孔德贵, 等. 飞秒激光在硅表面诱导微结构[J]. 光学学报, 2014, 34(s1): s114002.

【4】Chen Chao, Yang Xianhui, Wang Chuang, et al. High-order tilted fiber Bragg gratings carved with femtosecond laser[J]. Acta Optica Sinica, 2014, 34(5): 0506001.
陈超, 杨先辉, 王闯, 等. 飞秒激光刻写高阶倾斜光纤Bragg光栅[J]. 光学学报, 2014, 34(5): 0506001.

【5】Li J, Chai L, Shi J, et al. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier[J]. Appl Phys Lett, 2014, 104(3): 031117.

【6】Holzwarth R, Zimmermann M, Udem T, et al. Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb[J]. IEEE Journal of Quantum Electronics, 2001, 37(12): 1493-1501.

【7】Li Pan, Shi Lei, Wang Xuefeng, et al. Experimental investigation of the supercontinuum generated by amplificated high repetition mode-locked pulses[J]. Acta Optica Sinica, 2015, 35(s2): s214006.
李磐, 时雷, 王学锋, 等. 基于高重复频率锁模脉冲放大产生超连续谱的实验研究[J]. 光学学报, 2015, 35(s2): s214006.

【8】Mollenauer L F, Stolen R H. The soliton laser[J]. Opt Lett, 1984, 9(1): 13-15.

【9】Nelson L E, Jones D J, Tamura K, et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B: Lasers and Optics, 1997, 65(2): 277-294.

【10】Tamura K, Ippen E P, Haus H A, et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Opt Lett, 1993, 18(13): 1080-1082.

【11】Ilday F, Buckley J R, Clark W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Phys Rev Lett, 2004, 92(21): 213902.

【12】Renninger W H, Chong A, Wise F W. Amplifier similaritons in a dispersion-mapped fiber laser[J]. Opt Express, 2011, 19(23): 22496-22501.

【13】Oktem B, lgüdür C, Ilday F . Soliton-similariton fibre laser[J]. Nature Photon, 2010, 4(5): 307-311.

【14】Chong A, Buckley J, Renninger W, et al. All-normal-dispersion femtosecond fiber laser[J]. Opt Express, 2006, 14(21): 10095-10100.

【15】Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ[J]. Opt Lett, 2007, 32(16): 2408-2410.

【16】Baumgartl M, Lecaplain C, Hideur A, et al. 66 W average power from a microjoule-class sub-100 fs fiber oscillator[J]. Opt Lett, 2012, 37(10): 1640-1642.

【17】Huang Yutao, Fan Zhongwei, Niu Gang, et al. 100 kHz repetition rate picosecond regenerative amplifier with high pulse stability[J]. Chinese J Lasers, 2012, 39(5): 0502009.
黄玉涛, 樊仲维, 牛岗, 等. 高脉冲稳定性的100 kHz皮秒再生放大器[J]. 中国激光, 2012, 39(5): 0502009.

引用该论文

Huang Lili,Logan Wright,Hu Minglie,Frank Wise,Wang Qingyue. Mode-Locked Regenerative Amplifier Based on Single Mode Fiber[J]. Chinese Journal of Lasers, 2016, 43(8): 0801007

黄莉莉,Logan Wright,胡明列,Frank Wise,王清月. 基于单模光纤的锁模再生放大器[J]. 中国激光, 2016, 43(8): 0801007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF