首页 > 论文 > 中国激光 > 43卷 > 8期(pp:802003--1)

纳秒脉冲激光诱导冲击波作用下TC17钛合金高应变率本构模型参数辨识

Parameter Identification of Constitutive Model at High Strain Rate for TC17 Titanium Alloy Under Shock Wave Induced by Nanosecond Pulsed Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于Johnson-Cook(J-C)本构模型,提出了基于有限元模型和修正Levenberg-Marquard(L-M)算法的参数辨识方法。对TC17材料进行不同参数、不同工艺的激光冲击,得到了高应变率条件下的残余应力场分布;利用霍普金森压杆得到了中应变率条件下TC17材料的动态响应曲线;将上述两个测试结果作为辨识目标。引入低应变率条件下材料的响应曲线作为约束条件,辨识得到了TC17钛合金高应变率条件下的J-C本构模型参数。实验和计算结果对比验证表明,辨识得到的参数能比较准确地描述TC17钛合金材料高应变率条件下的动态响应规律,并预测激光冲击条件下材料的残余应力场分布。

Abstract

On the basis of the Johnson-Cook (J-C) constitutive model, one parameter identification method based on the finite element model and the modified Levenberg-Marquard (L-M) algorithm is proposed. When TC17 materials are under laser shocking with different parameters and processes, the residual stress field distribution at high strain rate is obtained and the dynamic response curve at intermediate strain rate is obtained by the Hopkinson pressure bar. The above two test results are taken as the targets of identification. The response curve at low strain rate is introduced as a constraint condition and the J-C constitutive model parameters at high strain rate are identified. The comparison between the experimental and calculated results indicates that the parameters obtained by identification can be used to accurately describe the dynamic response law of TC17 titanium alloys at high strain rate and to predict the residual stress field distribution of materials under laser shocking.

广告组5 - 光束分析仪
补充资料

中图分类号:V261.93;TG135

DOI:10.3788/cjl201643.0802003

所属栏目:激光制造

基金项目:国家973计划(2015CB057400)、国家自然科学基金 (51505496,51305456)

收稿日期:2016-03-08

修改稿日期:2016-04-07

网络出版日期:--

作者单位    点击查看

游熙:空军工程大学等离子体动力学重点实验室, 陕西 西安 710038
聂祥樊:空军工程大学等离子体动力学重点实验室, 陕西 西安 710038
何卫锋:空军工程大学等离子体动力学重点实验室, 陕西 西安 710038
李东霖:空军工程大学等离子体动力学重点实验室, 陕西 西安 710038

联系人作者:游熙(296212034@qq.com)

备注:游熙(1991—),男,硕士研究生,主要从事激光冲击强化方面的研究。

【1】颜鸣皋. 中国航空材料手册[M]. 北京: 中国标准出版社, 2004: 179-180.

【2】Chai Yan, Ren Jun, He Weifeng, et al. Effect of laser shock processing on the fatigue property of K4030 alloy blade[J]. Laser & Optoelectronics Progress, 2014, 51(1): 011405.
柴艳, 任军, 何卫锋, 等. 激光冲击强化对K4030合金叶片疲劳性能的影响[J]. 激光与光电子学进展, 2014, 51(1): 011405.

【3】Jiao Yang, He Weifeng, Luo Sihai, et al. Study of micro-scale laser shock processing without coating improving the high cycle fatigue performance of K24 simulated blades[J]. Chinese J Lasers, 2015, 42(10): 1003002.
焦阳, 何卫锋, 罗思海, 等. 无保护层激光冲击提高K24合金高周疲劳性能研究[J]. 中国激光, 2015, 42(10): 1003002.

【4】Luo Sihai, He Weifeng, Zhou Liucheng, et al. Effects of laser shock processing on high temperature fatigue properties and fracture morphologies of K403 nickel-based alloy[J]. Chinese J Lasers, 2014, 41(9): 0903001.
罗思海, 何卫锋, 周留成, 等. 激光冲击对K403镍基合金高温疲劳性能和断口形貌的影响[J]. 中国激光, 2014, 41(9): 0903001.

【5】Qiao Hongchao. Effect of laser peening on mechanical properties of 6082 aluminum alloy[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061404.
乔红超. 激光冲击强化对6082铝合金机械性能的影响[J]. 激光与光电子学进展, 2015, 52(6): 061404.

【6】Luo Mi, Luo Kaiyu, Wang Qingwei, et al. Numerical simulation of laser shock peening on residual stress field of 7075-T6 aluminum alloy welding[J]. Acta Optica Sinica, 2014, 34(4): 0414003.
罗密, 罗开玉, 王庆伟, 等. 激光冲击7075-T6铝合金焊缝的残余应力场数值模拟[J]. 光学学报, 2014, 34(4): 0414003.

【7】Liu Xuhong, Huang Xicheng, Chen Yuze, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading[J]. Advances in Mechanics, 2007, 37(3): 361-374.
刘旭红, 黄西成, 陈裕泽, 等. 强动载荷下金属材料塑性变形本构模型评述[J]. 力学进展, 2007, 37(3): 361-374.

【8】Jiang F, Li J F, Sun J, et al. Al7050-T7451 turning simulation based on the modified power-law material model[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(9): 871-880.

【9】Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]. Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541-547.

【10】Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.

【11】Wang X M, Shi J. Validation of Johnson-Cook plasticity and damage model using impact experiment[J]. International Journal of Impact Engineering, 2013, 60(10): 67-75.

【12】Lin B, Lupton C, Spanrad S, et al. Fatigue crack growth in laser-shock-peened Ti-6Al-4V aerofoil specimens due to foreign object damage[J]. International Journal of Fatigue, 2014, 59(3): 23-33.

【13】Peyre P, Chaieb I, Braham C. FEM calculation of residual stress induced by laser shock processing in stainless steels[J]. Modeling & Simulation in Materials Science & Engineering, 2007, 15(3): 205-221.

【14】Seo S W, Min O, Yang H. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J]. International Journal of Impact Engineering, 2005, 31(6): 735-754.

【15】Wang Tao, Chen Guoding, Ju Jiangtao. Experimental study of constitutive relationship of superalloy GH4169 under high strain rates[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 946-953.
王涛, 陈国定, 巨江涛. GH4169高温合金高应变率本构关系试验研究[J]. 航空学报, 2013, 34(4): 946-953.

【16】Yang Shubao, Xu Jiuhua, Wei Weihua, et al. Impact of hydrogenation on flow behavior of titanium alloy TC4[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 1093-1098.
杨树宝, 徐九华, 危卫华, 等. 置氢处理对TC4钛合金流变行为的影响[J]. 航空学报, 2010, 31(5): 1093-1098.

【17】Hu Xuteng, Song Yingdong. Contrastive analysis of three dynamic constitutive models for TC4 titanium alloy[J]. Ordnance Material Science and Engineering, 2013, 36(1): 32-36.
胡绪腾, 宋迎东. TC4钛合金三种动态本构模型的对比分析[J]. 兵器材料科学与工程, 2013, 36(1): 32-36.

【18】李应红. 激光冲击强化理论与技术[M]. 北京: 科学出版社, 2013: 82-89.

【19】Ding K, Ye L. Laser shock peening performance and process simulation[M]. New York: Woodhead, 2006: 50-52.

【20】陈宝林. 最优化理论与算法[M]. 北京: 清华大学出版社, 2005: 383-391.

【21】罗伯特·阿尔伯特·格拉汉姆. 固体的冲击波压缩[M]. 贺红亮, 译. 北京: 科学出版社, 2010.

【22】Ballard P, Fournier J, Fabbro R, et al. Residual stresses induced by laser-shocks[J]. Le Journal de Physique IV, 1991, 1(C3): 487-494.

【23】Meyers M A. Dynamic behavior of materials[M]. Zhang Qingming, Transl. Beijing: National Defense Industry Press, 2006: 212-216.
迈耶斯. 材料的动力学行为[M]. 张庆明, 译. 北京: 国防工业出版社, 2006: 212-216.

【24】Kay G. Failure modeling of titanium-61-4V and 2024-T3 aluminum with the Johnson-Cook material model[R]. United States: UCRL, 2002.

【25】Nie Xiangfan, Zang Shunlai, He Weifeng, et al. Sensitivity analysis and restraining method of “residual stress hole” induced by laser shock peening[J]. High Voltage Engineering, 2014, 40(7): 2107-2112.
聂祥樊, 臧顺来, 何卫锋, 等. 激光冲击“残余应力洞”的参数敏感性分析及其抑制方法[J]. 高电压技术, 2014, 40(7): 2107-2112.

引用该论文

You Xi,Nie Xiangfan,He Weifeng,Li Donglin. Parameter Identification of Constitutive Model at High Strain Rate for TC17 Titanium Alloy Under Shock Wave Induced by Nanosecond Pulsed Lasers[J]. Chinese Journal of Lasers, 2016, 43(8): 0802003

游熙,聂祥樊,何卫锋,李东霖. 纳秒脉冲激光诱导冲击波作用下TC17钛合金高应变率本构模型参数辨识[J]. 中国激光, 2016, 43(8): 0802003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF