首页 > 论文 > 中国激光 > 43卷 > 8期(pp:805001--1)

非均匀湍流路径下光束分层传输缩比实验研究

Reduced-Scale Experiment of Beam Propagation Under Multilayer Atmosphere Model Along Inhomogeneous Turbulent Path

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在非均匀湍流路径光束传输的研究中,设置合理的相位屏位置分布和数目尤为关键。在多层相位屏模型的基础上,建立了非均匀湍流路径下大气分层优化模型,结合两层相位屏的光束传输算例,在Hufnagel-Valley 5/7大气湍流廓线模型下,分别计算了相应的大气离散分层边界与相位屏的最优分布位置,并引入相应的最大Rytov判据。根据等菲涅耳数、等湍流效应和几何尺度缩比原则,计算了具体光束传输缩比实验参数,对比分析了光强起伏概率密度分布和相位结构函数的理论值与实验值。研究结果表明:不同天顶角下光强起伏概率密度分布实验拟合与理论曲线整体分布趋势一致,且呈现出对数正态分布的趋势;光强起伏的经验累积分布实验与理论曲线趋势保持一致,说明概率密度分布曲线拟合程度较好;而在所关注的低频区域,相位结构函数的实验曲线与理论曲线虽然存在一定的偏差,但其整体趋势仍然保持一致,且近似服从5/3幂律规律。

Abstract

To set the reasonable position distribution and the number of phase screens are crucial in the research on beam propagation along inhomogeneous turbulent path. A multilayer atmospheric optimization model is constructed based on the multilayer phase-screen model. Combined with an example of light propagation in two-layer phase-screen model, both the boundary of atmospheric layers and the optimal position of phase screen are calculated under the condition of Hufnagel-Valley 5/7 atmospheric turbulence profile model. And the maximization of Rytov criterion in the two-layer phase screen model is introduced as well. The specific experimental parameters of the above-mentioned model are calculated according to the principles of equal Fresnel number, equal turbulence effect and reduced-scale principle. The experimental and the theoretical data on the probability density distribution of intensity fluctuation and the phase structure function are compared and analyzed. The results show that the trend of intensity fluctuation under different zenith angles is consistent with the lognormal distribution, and the empirical cumulative distribution function of intensity fluctuation in the experiment agrees basically with theoretical results, which indicates that the curve of its probability density distribution has a good fit degree. Although some errors exist in the phase structure functions between test results and theoretical calculation results in the low frequency region, it can be seen that the structure function still approximates a 5/3 power law.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.12

DOI:10.3788/cjl201643.0805001

所属栏目:光束传输与控制

基金项目:国家自然科学基金(61308082)

收稿日期:2016-03-08

修改稿日期:2016-04-25

网络出版日期:--

作者单位    点击查看

邵文毅:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209中国科学院大学, 北京 100049
鲜浩:中国科学院自适应光学重点实验室, 四川 成都 610209中国科学院光电技术研究所, 四川 成都 610209

联系人作者:邵文毅(shaoweni13@hotmail.com)

备注:邵文毅(1991—),男,硕士研究生,主要从事自适应光学方面的研究。

【1】Luo Wen, Geng Chao, Li Xinyang. Simulation and experimental study of single-mode fiber coupling efficiency affected by atmospheric turbulence aberration[J]. Acta Optica Sinica, 2014, 34(6): 0606001.
罗文, 耿超, 李新阳. 大气湍流像差对单模光纤耦合效率的影响分析及实验研究[J]. 光学学报, 2014, 34(6): 0606001.

【2】Ji Xiaoling. Influence of atmospheric turbulence on the spreading and directionality of radial Gaussian array beams[J]. Acta Physica Sinica, 2010, 59(1): 692-698.
季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响[J]. 物理学报, 2010, 59(1): 692-698.

【3】Ma Xiaoping, Sun Jianfeng, Hou Peipei, et al. Research progress on overcoming the atmospheric turbulence effect in satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120002.
马小平, 孙建锋, 侯培培, 等. 星地激光通信中克服大气湍流效应研究进展[J]. 激光与光电子学进展, 2014, 51(12): 120002.

【4】Ke Xizheng, Zhang Yu. Scintillation of partially coherent beam in atmospheric turbulence[J]. Acta Optica Sinica, 2015, 35(1): 0106001.
柯熙政, 张宇. 部分相干光在大气湍流中的光强闪烁效应[J]. 光学学报, 2015, 35(1): 0106001.

【5】Han Liqiang, You Yahui. Performance of free space optical communication with combined effects from atmospheric turbulence and pointing errors[J]. Acta Optica Sinica, 2014, 34(11): 1106005.
韩立强, 游雅晖. 大气湍流及瞄准误差联合效应下自由空间光通信的性能[J]. 光学学报, 2014, 34(11): 1106005.

【6】Rao Ruizhong. Light propagation in the turbulent atmosphere[M]. Hefei: Anhui Science and Technology Press, 2005: 95-98.
饶瑞中. 光在湍流大气中的传播[M]. 合肥: 安徽科学技术出版社, 2005: 95-98.

【7】Coles W A, Filice J P, Frehlich R G, et al. Simulation of wave propagation in three-dimensional random media[J]. Applied Optics, 1995, 34(12): 2089-2101.

【8】Qian Xianmei, Zhu Wenyue, Rao Ruizhong. Phase screen distribution for simulating laser propagation along an inhomogeneous atmospheric path[J]. Acta Physica Sinica, 2009, 58(9): 6633-6639.
钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布[J]. 物理学报, 2009, 58(9): 6633-6639.

【9】Wallner E P. Optimizing the locations of multiconjugate wavefront correctors[C]. SPIE, 1994, 2201: 110-116.

【10】Fusco T, Conan J M, Michau V, et al. Efficient phase estimation for large-field-of-view adaptive optics[J]. Optics Letters, 1999, 24(21): 1472-1474.

【11】Hardy J W, Thompson L. Adaptive optics for astronomical telescopes[M]. New York: Oxford University Press, 1998: 90-92.

【12】Schmidt J D. Numerical simulation of optical wave propagation with examples in MATLAB[M]. Bellingham: SPIE Press, 2010: 164-166.

【13】Andrews L C, Phillips R L, Hopen C Y. Laser beam scintillation with applications[M]. Bellingham: SPIE Press, 2001: 68-89.

【14】Rao Ruizhong, Wang Shipeng, Liu Xiaochun, et al. Probability distribution of laser irradiance scintillation in a real turbulent atmosphere[J]. Acta Optica Sinica, 1999, 19(1): 81-86.
饶瑞中, 王世鹏, 刘晓春, 等. 实际大气中激光闪烁的概率分布[J]. 光学学报, 1999, 19(1): 81-86.

引用该论文

Shao Wenyi,Xian Hao. Reduced-Scale Experiment of Beam Propagation Under Multilayer Atmosphere Model Along Inhomogeneous Turbulent Path[J]. Chinese Journal of Lasers, 2016, 43(8): 0805001

邵文毅,鲜浩. 非均匀湍流路径下光束分层传输缩比实验研究[J]. 中国激光, 2016, 43(8): 0805001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF