首页 > 论文 > 激光与光电子学进展 > 53卷 > 8期(pp:80006--1)

分布式光纤传感在光纤激光中的应用研究

Application of Distributed Fiber Sensing in Fiber Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

增益光纤中的热效应是限制高功率光纤激光器输出功率的重要因素之一。采用基于分布式温度传感的方法对光纤激光器增益光纤的温度进行测量,有助于对光纤激光器形成保护,并有望对热致模式不稳定(MI)等非线性效应的产生机理提供一种新的认知手段。介绍了目前国内外主要的分布式光纤传感技术,重点介绍了光频域反射法(OFDR)、布里渊光时域分析(BOTDA)、布里渊光频域分析(BOFDA)和布里渊相干域分析(BOCDA)等技术在光纤温度和应力测量方面的应用。最后分析了利用各种分布式传感方案实现高功率光纤激光器温度测量的可行性,为高功率光纤激光器的温度测量提供参考。

Abstract

Thermal effect in gain fibers is one of the major factors limiting the output power of high power lasers. Measuring the temperature of gain fibers with the distributed temperature sensing method is beneficial to protecting fiber lasers, and may provide a new approach to understand the underlying mechanisms of the mode instability (MI) and other nonlinear effects occurring in fiber lasers. Major technologies on distributed optical fiber sensing are introduced, with more focus on the applications of technologies, such as optical frequency domain reflectometry (OFDR), Brillouin optical time domain analysis (BOTDA), Brillouin optical frequency domain analysis (BOFDA), and Brillouin optical correlation domain analysis (BOCDA), in the measurements of temperature and stress in fiber lasers. Finally, the feasibility of some distributed sensing schemes is analyzed, which provides references for temperature measurement in high power fiber lasers.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O437

DOI:10.3788/lop53.080006

所属栏目:综述

基金项目:国家自然科学基金(61505260)、湖南省自然科学基金项目(14JJ3004)

收稿日期:2016-03-14

修改稿日期:2016-04-20

网络出版日期:2016-07-28

作者单位    点击查看

周子超:国防科技大学光电科学与工程学院, 湖南 长沙 410073
王小林:国防科技大学光电科学与工程学院, 湖南 长沙 410073
粟荣涛:国防科技大学光电科学与工程学院, 湖南 长沙 410073
张汉伟:国防科技大学光电科学与工程学院, 湖南 长沙 410073
周朴:国防科技大学光电科学与工程学院, 湖南 长沙 410073
许晓军:国防科技大学光电科学与工程学院, 湖南 长沙 410073

联系人作者:周子超(zhouzichao@nudt.edu.cn)

备注:周子超(1992—),男,硕士研究生,主要从事高功率光纤激光器方面的研究。

【1】Zervas M N, Codemard C A. High power fiber lasers: A review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241.

【2】Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.

【3】Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.

【4】Aoyama K I, Nakagawa K, Itoh T. Optical time domain reflectometry in a single-mode fiber[J]. IEEE Journal of Quantum Electronics, 1981, 17(6): 862-868.

【5】Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applied Physics Letters, 1981, 39(9): 693-695.

【6】Zhang Z, Liu H, Guo N, et al. Optimum designs of 30-km distributed optical fiber Raman photon temperature sensors and measurement network[C]. SPIE, 2002, 4920: 268-273.

【7】Geng J P, Jin R H, Xu J D, et al. An improved model for the fully distributed temperature single-mode fibre optic sensor based on Raman optical frequency-domain reflectometry[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(10): 932-936.

【8】Weng Y, Ip E, Pan Z, et al. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers[J]. Optics Express, 2015, 23(7): 9024-9039.

【9】Li W H, Bao X Y, Li Y, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 2008, 16(26): 21616-21625.

【10】Garus D, Gogolla T, Krebber K, et al. Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements[J]. Journal of Lightwave Technology, 1997, 15(4): 654-662.

【11】Hotate K, Hasegawa T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation[J]. IEICE Transactions on Electronics, 2000, 83(3): 405-412.

【12】Zhang Z, Bao X Y. Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system[J]. Opt Express, 2008, 16(14): 10240-10247.

【13】Wu H, Qian Y, Li H, et al. Safety monitoring of long distance power transmission cables and oil pipelines with OTDR technology[C]. CLEO: Applications and Technology, 2015: ATu1M.4.

【14】Kreger S T, Sang A K, Gifford D K, et al. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter[C]. SPIE, 2009, 7316: 73160A.

【15】Soller B, Gifford D, Wolfe M S, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 2005, 13(2): 666-674.

【16】Belal M, Cho Y T, Ibsen M, et al. A temperature-compensated high spatial resolution distributed strain sensor[J]. Measurement Science and Technology, 2010, 21(1): 15204-15208.

【17】元秀华, 胡静, 张传汉. ROFDR分布式光纤体表温度场监测与麻醉深度研究[C]. 中国光学学会2006年学术大会论文摘要集, 2006: 59.

【18】王武芳. 基于ROFDR的分布式光纤测温系统模型分析[J]. 科技资讯, 2013, (5): 12-13.

【19】Dong Y, Zhang H, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229-1235.

【20】Bernini R, Minardo A, Zeni L. Vectorial dislocation monitoring of pipelines by use of Brillouin-based fiber-optics sensors[J]. Smart Materials and Structures, 2008, 17(1): 015006.

【21】Minardo A, Testa G, Zeni L, et al. Theoretical and experimental analysis of Brillouin scattering in single-mode optical fiber excited by an intensity-and phase-modulated pump[J]. Journal of Lightwave Technology, 2010, 28(2): 193-200.

【22】Bernini R, Minardo A, Zeni L. Distributed sensing at centimeter-scale spatial resolution by BOFDA: Measurements and signal processing[J]. IEEE Photonics Journal, 2012, 4(1): 48-56.

【23】Elooz D, Antman Y, Levanon N, et al. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis[J]. Optics Express, 2014, 22(6): 6453-6463.

【24】Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 1998, 37(10): 1735-1740.

【25】Soller B J, Gifford D K, Wolfe M S, et al. Measurement of localized heating in fiber optic components with millimeter spatial resolution[C]. Optical Fiber Communication Conference, 2006: OFN3.

【26】Froggatt M E, Gifford D K, Kreger S, et al. Distributed strain and temperature discrimination in unaltered polarization maintaining fiber[C]. Optical Fiber Sensors, 2006: ThC5.

【27】Kreger S T, Sang A K, Gifford D K, et al. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter[C]. SPIE, 2009, 7316: 73160A.

【28】Song J, Li W H, Lu P, et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 2014, 6(3): 1-8.

【29】Beier F, Heinzig M, Haarlammert N, et al. In situ temperature measurement in high power fiber amplifiers[C]. The European Conference on Lasers and Electro-Optics, 2015: CJ_10_6.

【30】Walbaum T, Heinzig M, Beier F, et al. Spatially resolved measurement of the core temperature in a high-power thulium fiber system[C]. SPIE, 2016, 9728: 97280P.

【31】Beier F, Heinzig M, Sattler B, et al. Temperature measurements in an ytterbium fiber amplifier up to the mode instability threshold[C]. SPIE, 2016, 9728: 97282P.

【32】Horiguchi T, Tateda M. BOTDA-Non destructive measurement of single-mode optical fiber attenuation characteristics using brillouin interaction: Theory[J]. Journal of Lightwave Technology, 1989, 7(8): 1170-1176.

【33】Bao X, Webb D J, Jackson D A. 22-km distributed temperature sensor using Brillouin gain in an optical fiber[J]. Optics Letters, 1993, 18(7): 552-554.

【34】Liang H, Li W, Linze N, et al. High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses[J]. Optics Letters, 2010, 35(10): 1503-1505.

【35】Jauregui C, Richardson D J, Nilsson J, et al. In situ thermal/Brillouin characterization of a high-power fiber laser based on Brillouin optical time domain analysis[C]. Frontiers in Optics, 2008: FTuG7.

【36】Garus D, Krebber K, Schliep F, et al. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis[J]. Optics Letters, 1996, 21(17): 1402-1404.

【37】Hotate K. Fiber distributed Brillouin sensing with optical correlation domain techniques[J]. Optical Fiber Technology, 2013, 19(6): 700-719.

【38】Tanaka M, Hotate K. Application of correlation-based continuous-wave technique for fiber Brillouin sensing to measurement of strain distribution on a small size material[J]. IEEE Photonics Technology Letters, 2002, 14(5): 675-677.

【39】Song K Y, He Z, Hotate K. Effects of intensity modulation of light source on Brillouin optical correlation domain analysis[J]. Journal of Lightwave Technology, 2007, 25(5): 1238-1246.

【40】Jeong J H, Lee K, Song K Y, et al. Differential measurement scheme for Brillouin optical correlation domain analysis[J]. Optics Express, 2012, 20(24): 27094-27101.

【41】Song K Y, He Z, Hotate K. Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis[J]. Optics Letters, 2006, 31(17): 2526-2528.

【42】Hotate K, Ong S S L. Distributed dynamic strain measurement using a correlation-based Brillouin sensing system[J]. IEEE Photonics Technology Letters, 2003, 15(2): 272-274.

【43】Hotate K, Yamauchi T. Fiber-optic distributed strain sensing system by Brillouin optical correlation domain analysis with a simple and accurate time-division pump-probe generation scheme[J]. Japanese Journal of Applied Physics, 2005, 44(7L): L1030.

【44】Song K Y, Hotate K. Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis[J]. IEEE Photonics Technology Letters, 2007, 23(19): 1928-1930.

【45】Hotate K, Numasawa M, Kishi M, et al. High speed random accessibility of Brillouin optical correlation domain analysis with time division pump-probe generation scheme[C]. SPIE, 2012, 8351: 83510W.

引用该论文

Zhou Zichao,Wang Xiaolin,Su Rongtao,Zhang Hanwei,Zhou Pu,Xu Xiaojun. Application of Distributed Fiber Sensing in Fiber Lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080006

周子超,王小林,粟荣涛,张汉伟,周朴,许晓军. 分布式光纤传感在光纤激光中的应用研究[J]. 激光与光电子学进展, 2016, 53(8): 080006

被引情况

【1】李威,刘伟民,周黎明,程凌浩,关柏鸥. 基于正交相干接收的布里渊斯托克斯与反斯托克斯散射光分离技术. 中国激光, 2018, 45(7): 706003--1

【2】吴永红,朱莎,许蔚,张海明. 分布式光纤裂缝传感工程应用研究进展. 激光与光电子学进展, 2018, 55(9): 90002--1

【3】王健健,李永倩. 布里渊光时域分析系统性能提高方法综述. 激光与光电子学进展, 2018, 55(11): 110003--1

【4】隋阳,孟钏楠,董玮,张歆东. 基于径向基函数神经网络直接提取布里渊散射谱温度的方法. 光学学报, 2018, 38(12): 1229001--1

【5】赵亚,王强,凌张伟. 基于选择性平均阈值的分布式光纤自来水管泄漏检测定位及实验分析. 激光与光电子学进展, 2019, 56(3): 30602--1

【6】孙艮,白浩杰,石玉伦,路书祥. 光频域反射计的研究进展及应用. 激光与光电子学进展, 2020, 57(5): 50007--1

【7】王青山,王伟杰,郭旭,毛丽娜,牧继清,陈磊. 分布式拉曼光纤温度传感器的误差修正方法. 激光与光电子学进展, 2020, 57(17): 170602-50

【8】胡鑫鑫,王亚辉,赵乐,张倩,张明江,张建忠,乔丽君,王涛,高少华. 布里渊光相干域分析技术研究进展. 中国激光, 2021, 48(1): 100001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF