首页 > 论文 > 光子学报 > 45卷 > 7期(pp:70706002--1)

基于半导体光纤环形激光器的光纤布喇格光栅动态应变传感系统

Dynamic Strain Sensor System Using Fiber Bragg Grating-Tuned Semiconductor Fiber Ring Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种能实时识别外来撞击声发射信号的被动结构健康监测系统. 此系统使用基于半导体光放大器的光纤布喇格光栅传感系统监测高频动态应变, 动态应变引起的光栅反射谱波长移动转化为相位变化, 并被迈克尔逊干涉仪解调. 在迈克尔逊干涉解调仪中, 使用PID控制器补偿由温度和大的准静态应变引起的低频漂移. 对光程差和布喇格光栅光谱线宽等参量进行了分析和优化. 利用该解调系统成功地对金属板受到撞击时激发的声发射进行了感测, 可获取的动态应变信号频率高达197 kHz.

Abstract

A passive structural health monitoring system was presented for sensing foreign-object impact by using a semiconductor optical amplifier-based Fiber Bragg Grating (FBG) sensor that monitors high frequency dynamic strains. Strains applied on the FBG sensors were encoded as wavelength shifts of the light reflected by the FBG sensor which were then converted into phase shifts and demodulated by the Michelson interferometer. A Proportion Integration Differentiation(PID) feedback controller was employed to prevent interference drifting away from quadrature due to temperature and low frequency fluctuations. The adaptability of the demodulator and the optimum optical path difference were investigated. The impact signal from FBG dynamic strain sensor is acquired at the frequency up to 197 kHz.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN25

DOI:10.3788/gzxb20164507.0706002

基金项目:国家自然科学基金(No.51304260)和重庆市自然科学基金项目(No.cstc2012jjA40057)资助

收稿日期:2016-01-13

修改稿日期:2016-04-25

网络出版日期:--

作者单位    点击查看

陶传义:重庆理工大学 光电信息学院, 重庆 400054Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
魏鹤鸣:Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA

联系人作者:陶传义(taochuanyi@cqut.edu.cn)

备注:陶传义(1984-), 男, 副教授, 博士, 主要研究方向为光纤光栅传感技术.

【1】KIRIKERA G R, BALOGUN O, KRISHNASWAMY S. Adaptive fiber bragg grating sensor network for structural health monitoring: applications to impact monitoring[J]. Structural Health Monitoring, 2011, 10(1): 5-12.

【2】QIAO Y, ZHOU Y, KRISHNASWAMY S. Adaptive demodulation of dynamic signals from fiber Bragg gratings using two-wave mixing technology[J]. Applied Optics, 2006, 45(21): 5132-5142.

【3】PETCULESCU G, KRISHNASWAMY S, ACHENBACH J D. Group delay measurements using modally selective Lamb wave transducers for detection and sizing of delaminations in composites[J]. Smart Materials and Structures, 2008, 17(1): 015007.

【4】SHU Yue-jie, CHEN Wei-min, ZHANG Peng, et al. Investigation on evaluation theory of fiber Bragg grating tensile fatigue property[J]. Acta Photonica Sinica, 2013, 42(7): 805-811.
舒岳阶, 陈伟民, 章鹏, 等. 光纤布喇格光栅器件应力疲劳评价理论研究[J]. 光子学报, 2013, 42(7): 805-811.

【5】YU You-long, TAM Hwa-yaw, CHUNG Weng-hong. A fiber Bragg grating sensor system with interferometric demodulation technique[J]. Acta Optica Sinica, 2001, 21(8): 987-989.
余有龙, 谭华耀, 锺永康. 基于干涉解调技术的光纤光栅传感系统[J]. 光学学报, 2001, 21(8): 987-989.

【6】ZHU Y, ZHU Y, BALOGUN O, et al. Dynamic strain sensing in a long-span suspension bridge using fiber Bragg grating sensors[C]. AIP Conference Proceedings, 2011, 1335: 1418-1423.

【7】BALOGUN O, KRISHNASWAMY S. A fiber Bragg grating based tunable laser source for quasi-static and dynamic strain monitoring[C]. SPIE, 2009, 7295: 72950I.

【8】LIU T, HU L, HAN M. Multiplexed fiber-ring laser sensors for ultrasonic detection[J]. Optics Express, 2013, 21(25): 30474-30480.

【9】KIM S, KWON J, KIM S, et al. Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 2001, 13(4): 350-351.

【10】KERSEY A D, BERKOFF T A, MOREY W W. Multiplexed fiber Bragg grating strain-sensor system with a Fabry-Perot wavelength filter[J]. Optics Letters, 1993, 18(16): 1370-1372.

【11】XU M, GEIGER G H, DAKIN J P. Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter[J]. IEEE Journal of Lightwave Technology, 1993, 14(3): 391-396.

【12】FOMITCHOV P, KRISHNASWAMY S. Response of a fiber Bragg grating ultrasonic sensor[J]. Optical Engineering, 2003, 42(4): 956-963.

【13】DAVIS M A, KERSEY A D. Application of a fiber Fourier Transform spectrometer to the detection of wavelength encoded signals from Bragg-grating sensors[J]. IEEE Journal of Lightwave Technology, 1995, 13(7): 1289-1295.

【14】KERSEY A D, BERKOFF T A, MOREY W W. High resolution fiber-grating based strain sensor with interferometric wavelength shift detection[J]. Electronics Letters, 1992, 28(3): 236-238.

【15】BORN M, WOLF E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[M]. New York: Cambridge University Press, 7th edition, 1999.

【16】LI Ning, WEI Peng, MO Hong, et al. Bearing state monitoring using a novel fiber Bragg grating acoustic emission technique[J]. Journal of Vibration and Shock, 2015, 34(3): 172-177.
李宁, 魏鹏, 莫宏, 等. 光纤光栅声发射检测新技术用于轴承状态监测的研究[J]. 振动与冲击, 2015, 34(3): 172-177.

引用该论文

TAO Chuan-yi,WEI He-ming. Dynamic Strain Sensor System Using Fiber Bragg Grating-Tuned Semiconductor Fiber Ring Laser[J]. ACTA PHOTONICA SINICA, 2016, 45(7): 070706002

陶传义,魏鹤鸣. 基于半导体光纤环形激光器的光纤布喇格光栅动态应变传感系统[J]. 光子学报, 2016, 45(7): 070706002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF