首页 > 论文 > 红外与激光工程 > 45卷 > 7期(pp:726005--1)

无人机视觉导航算法

Unmanned aerial vehicle vision navigation algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为保证无人机着陆精度和安全性, 提出了一种无人机自主着陆视觉导航位姿解算方法。首先对机载相机进行标定, 获取相机参数; 然后综合考虑地标形状和尺寸、地标角点几何分布和角点数量对位姿估计精度的影响, 设计了“T”型着陆地标形状和尺寸参数, 将地标轮廓提取和角点检测算法相结合, 得到几何分布好、数量适中的8个角点用于位姿解算, 保证了位姿解算精度; 为减少LK (Lucas-Kanade)光流法稳定跟踪地标的处理时间, 直接将提取的这8个角点作为LK光流法检测和跟踪的输入, 保证了算法实时性; 最后利用三维空间到二维像平面投影关系对飞行位姿参数进行实时解算。实验结果表明: 算法具有较高估计精度, 算法平均周期为76.756 ms(约13帧/s),在速度较低的着陆阶段基本满足自主着陆视觉导航的实时性要求。

Abstract

In order to ensure accuracy and security of unmanned aerial vehicle(UAV)landing, a UAV autonomous landing with visual navigation pose parameters calculateion method was proposed. Firstly, the airborne camera was calibrated to get the camera parameters, then the important influence of landmark shape and size, angular point geometry distribution and number of points on pose estimation precision were considered, a "T" type landing landmark was designed with given size parameters, landmark contour extraction with corner detection algorithm was combined to get eight corners with good geometric distribution and the number was reasonable for pose estimation to guarantee the posture calculation accuracy. To reduce the processing time of Lucas-Kanade(LK) optical flow method tracking landmarks stably, the extracted eight corners were used as LK optical flow method input to detect and track, ensuring real-time performance of the algorithm. Finally, real-time flight pose parameters of UAV through the projection relationship between 3D space and 2D image plane were estimated. The results of simulation experiment show that the algorithm has high precision,and the average period is 76.756 ms (about 13 frames per second). The real-time requirements of visual aided navigation of autonomous landing at low speeds of landing stage is satisfied basically.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:V249

DOI:10.3788/irla201645.0726005

所属栏目:信息获取与辨识

基金项目:国防预研基金(Y42013010181, Y420150401XX); 国家部委十二五科技项目(Y31011040315); 中央高校基本科研业务费专项资金(NSIY191414)

收稿日期:2015-11-08

修改稿日期:2015-12-21

网络出版日期:--

作者单位    点击查看

黄楠楠:西安电子科技大学 机电工程学院, 陕西 西安 710071
刘贵喜:西安电子科技大学 机电工程学院, 陕西 西安 710071
张音哲:西安电子科技大学 机电工程学院, 陕西 西安 710071
姚李阳:西安电子科技大学 机电工程学院, 陕西 西安 710071

联系人作者:黄楠楠(1607896949@qq.com)

备注:黄楠楠(1988-), 女, 硕士生, 主要从事无人机视觉辅助导航、目标跟踪和图像处理等方面的研究。

【1】Wu Xianliang, Shi Zongying, Zhong Yisheng. An overview of vision-based UAV navigation[J]. Journal of System Simulation, 2010, 22(S1): 62-65. (in Chinese)
吴显亮, 石宗英, 钟宜生. 无人机视觉导航研究综述[J]. 系统仿真学报, 2010, 22(S1): 62-65.

【2】Sharp C S, Shakernia O, Shankar Sastry S. A vision system for landing an Unmanned Aerial Vehicle[C]//IEEE International Conference on Robotics and Automation (ICRA), 2001, 2: 1720-1727.

【3】Xu G L, Zhang Y, Ji S Y, et al. Research on computer vision-based for UAV autonomous landing on a ship[J].Pattern Recognition Letters, 2009, 30(6): 600-605.

【4】Laiacker M, Kondak K, Schwarzbach M, et al. Vision aided automatic landing system for fixed wing UAV[C]//Intelligent Robots and Systems(IROS), RSJ International Conference on,2013: 2971-2976.

【5】Kong W, Zhang D, Wang X, et al. Autonomous landing of an UAV with a ground-based actuated infrared stereovision system[C]//Intelligent Robots and Systems(IROS), 2013 IEEE/RSJ International Conference on: 2963-2970.

【6】Gui Y, Guo P Y, Zhang H L, et al. Airborne vision-based navigation method for UAV accuracy landing using infrared lamps[J]. Journal of Intelligent & Robotic Systems, 2013, 72(2): 197-218.

【7】Tsai A C, Gibbens P W, Stone R H. Advances in Image and Video Technology[M]. Berlin Heidelberg: Springer, 2006: 672-681.

【8】Schauwecker K, Zell A. On-Board Dual-Stereo-Vision for the Navigation of an Autonomous MAV[J]. Journal of Intelligent & Robotic Systems, 2014, 74(1-2): 1-16.

【9】Zhang Dan, Duan Jin, Gu Lingjia, et al. Method of camera calibration based on image processing[J]. Infrared and Laser Engineering, 2007, 36(S): 293-297. (in Chinese)
张丹, 段锦, 顾玲嘉, 等. 基于图像的模拟相机标定方法的研究[J]. 红外与激光工程, 2007, 36(S): 293-297.

【10】Niu Haitao, Zhao Xunjie. New method of camera cali-bration based on checkerboard[J]. Infrared and Laser Engineeing, 2011, 40(1): 133-137. (in Chinese)
牛海涛, 赵勋杰. 采用棋盘格模板的摄像机标定新方法[J]. 红外与激光工程, 2011, 40(1): 133-137.

【11】Li Zhihua, Li Xinguo. Infrared small moving target detection and tracking based on OpenCV[J]. Infrared and Laser Engineering, 2013, 42(9): 2561-2565. (in Chinese)
黎志华, 李新国. 基于OpenCV的红外弱小运动目标检测与跟踪[J]. 红外与激光工程, 2013, 42(9): 2561-2565.

【12】Xu Yong, Jia Tao. Position and attitude measurement method based on unmanned aerial vehicle image fea-ture fusion[J] .Laser & Optoelectronics Progress, 2015, 52(3): 160-170. (in Chinese)
许勇, 贾涛. 基于图像特征融合的无人机位姿测量方法[J].激光与光电子学进展, 2015, 52(3): 160-170.

【13】Wu Jiahuan, Ma Jinsheng. Key technology of vision-based navigation for aircraft based on GPU-SIFT[J]. Computer Measurement & Control, 2015, 23(4): 1371-1374. (in Chinese)
吴佳欢, 马金盛. 基于GPU-SIFT算法的飞行器视觉导航姿态估计关键技术[J]. 计算机测量与控制, 2015, 23(4): 1371-1374.

【14】Huang Hai. Research on flight control technology of the unmanned helicopter during hover/low-speed flight[D].Nanjing: Nanjing University of Aeronautics and As-tronautics, 2010. (in Chinese)
黄海. 无人直升机悬停/小速度段的飞行控制律设计技术研究[D]. 南京: 南京航空航天大学, 2010.

引用该论文

Huang Nannan,Liu Guixi,Zhang Yinzhe,Yao Liyang. Unmanned aerial vehicle vision navigation algorithm[J]. Infrared and Laser Engineering, 2016, 45(7): 0726005

黄楠楠,刘贵喜,张音哲,姚李阳. 无人机视觉导航算法[J]. 红外与激光工程, 2016, 45(7): 0726005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF