首页 > 论文 > 半导体光电 > 37卷 > 4期(pp:505-509)

内嵌镜像对称矩形腔楔形金属狭缝阵列的宽带增强透射

Broadband Enhanced Transmission through Wedge-shape Metallic Slits Array Embedded with Mirror Symmetric Rectangular Cavities

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用时域有限差分法研究了内嵌镜像对称矩形腔长度、宽度及其位置对楔形金属狭缝阵列结构透射特性的影响。研究发现, 采用此结构形成的光子晶体结构所产生的能带可以调控禁带, 不仅在短波长范围存在明显的传输禁带, 而且在长波长范围具有较好的增强透射, 表明这种内嵌镜像对称矩形腔进一步破坏了类法布里-珀罗腔共振条件, 更有利于短波长范围表面等离激元能量局域在腔内, 同时提高长波长范围的透射率。矩形腔位置是影响传输禁带和透射特性的主要因素, 其越接近中心位置, 禁带越宽, 透射率越高; 矩形腔厚度主要影响禁带宽度, 厚度为140nm时, 禁带宽度可达236nm; 矩形腔长度主要影响透射特性, 长度为260nm时, 透射率可达95%。

Abstract

The effects of length, width and position of embedded mirror symmetric rectangular cavities on transmission property of wedge-shape metallic slits array were studied using the finite-difference time-domain method. The results show that the generated energy band can control forbidden band by formative photonic crystal structure, the structure makes obvious forbidden band of transmission existing in short-wavelength range, and meanwhile it has enhanced transmission in long-wavelength range. It shows that the proposition of embedded with mirror symmetric rectangular cavities further destroys the resonance condition of Fabry-Perot-like cavity. It’s beneficial for energy of surface plasmon polariton to localize in cavity in short-wavelength range, meanwhile it improves the transmittance in long-wavelength range. The position of rectangular cavity is the main factor affecting the forbidden band of transmission and transmission property: when it approaches the central location, the forbidden band is wider and the transmittance is higher. The thickness of rectangular cavity mainly influences the width of forbidden band: when the thickness is 140nm, the width of forbidden band can be 236nm. The length of rectangular cavity influences the transmission property: when the length is 260nm, the transmittance can be 95%.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.16818/j.issn1001-5868.2016.04.011

所属栏目:材料、结构及工艺

基金项目:国家自然科学基金项目(61465004); 桂林电子科技大学研究生教育创新计划项目(YJCX201522); 广西自然科学基金项目(2013GXNSFAA019338,2013GXNSFAA019335); 广西高校科学技术研究项目重点项目(2013ZD026)

收稿日期:2015-10-08

修改稿日期:--

网络出版日期:--

作者单位    点击查看

肖功利:桂林电子科技大学1. 信息与通信学院 广西信息科学实验中心计算机科学与工程学院, 桂林 541004
郑龙:桂林电子科技大学1. 信息与通信学院 广西信息科学实验中心
王宏庆:桂林电子科技大学1. 信息与通信学院 广西信息科学实验中心
杨宏艳3
:桂林电子科技大学1. 信息与通信学院 广西信息科学实验中心
邓进丽:桂林电子科技大学1. 信息与通信学院 广西信息科学实验中心
李琦

联系人作者:肖功利(xgl.hy@126.com)

备注:肖功利(1975-), 男, 2010年毕业于复旦大学微电子与固体电子专业, 获博士学位, 现为副教授, 主要研究方向为MEMS传感器和等离子体光电子功能器件。

【1】Ebbesen T W,Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.

【2】Cao Q,Lalanne P. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits[J]. Phys. Rev. Lett., 2002, 88(5): 057403.

【3】Sturman B,Podivilov E, Gorkunov M. Theory of extraordinary light transmission through arrays of subwavelength slits[J]. Phys. Rev. B, 2008, 77(7): 075106.

【4】Ye Y Q,Jin Y. Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film[J]. Phys. Rev. E, 2009, 80(3): 036606.

【5】Barnes W L,Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

【6】Nahata A,Linke R A, Ishi T, et al. Enhanced nonlinear optical conversion from a periodically nanostructured metal film[J]. Optics Lett., 2003, 28(6): 423-425.

【7】Dahlin A,Zch M, Rindzevicius T, et al. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events[J]. J. the American Chemical Society, 2005, 127(14): 5043-5048.

【8】杨宏艳,肖功利. 金孔阵列电介质与金电介质孔阵列的强透射特性[J]. 光学学报, 2012, 32(11): 1130002.
Yang Hongyan,Xiao Gongli. Extraordinary transmission properties of gold aperture array-dielectric and gold-dielectric aperture array[J]. Acta Optica Sinica, 2012, 32(11): 1130002.

【9】Genet C,Ebbesen T W. Light in tiny holes[J]. Nature, 2007, 445(7123): 39-46.

【10】Degiron A,Ebbesen T W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J]. J. Optics A: Pure and Applied Optics, 2005, 7(2): S90.

【11】Ruan Z,Qiu M. Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances[J]. Phys. Rev. Lett., 2006, 96(23): 233901.

【12】郝志强,陈靖, 陈宗强, 等. 内嵌凹槽的金属亚波长狭缝共振透射特性分析[J]. 光电子·激光, 2012(6): 36.
Hao Zhiqiang,Chen Jing, Chen Zongqiang, et al. Analysis of the resonance transmittance properties of metallic subwavelength slit with an embedded groove[J]. J. Optoelectronics·Laser, 2012(6): 36.

【13】Wang C,Gu J, Han J, et al. Role of mode coupling on transmission properties of subwavelength composite hole-patch structures[J]. Appl. Phys. Lett., 2010, 96(25): 251102.

【14】Subramania G,Foteinopoulou S, Brener I. Nonresonant broadband funneling of light via ultrasubwavelength channels[J]. Phys. Rev. Lett., 2011, 107(16): 163902.

【15】Shen H,Maes B. Enhanced optical transmission through tapered metallic gratings[J]. Appl. Phys. Lett., 2012, 100(24): 241104.

【16】秦艳,曹威, 张中月. 内嵌矩形腔楔形金属狭缝的增强透射[J]. 物理学报, 2013, 62(12): 127302.
Qin Yan,Cao Wei, Zhang Zhongyue. Enhanced optical transmission through metallic slits embedded with rectangular cavities[J]. Acta Phys. Sin, 2013, 62(12): 127302.

【17】Palik E D.Handbook of Optical Constants of Solids[M]. New York: Academic Press, 1998.

【18】Lumerical Solutions Inc. FDTD Solutions Software[Z].Vancouver: Lumerical Solutions Softwares Ltd., 2003.

【19】Han Z,Forsberg E, He S. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides[J]. IEEE Photon. Technol. Lett., 2007, 19(2): 91-93.

引用该论文

XIAO Gongli,ZHENG Long,WANG Hongqing,YANG Hongyan,DENG Jinli,LI Qi. Broadband Enhanced Transmission through Wedge-shape Metallic Slits Array Embedded with Mirror Symmetric Rectangular Cavities[J]. Semiconductor Optoelectronics, 2016, 37(4): 505-509

肖功利,郑龙,王宏庆,杨宏艳3,,邓进丽,李琦. 内嵌镜像对称矩形腔楔形金属狭缝阵列的宽带增强透射[J]. 半导体光电, 2016, 37(4): 505-509

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF