首页 > 论文 > 强激光与粒子束 > 28卷 > 9期(pp:91003--1)

CO2激光加热硅芯光纤预制棒的温场分布

Temperature distribution of preform in drawing silicon core optical fiber with CO2 laser heating

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了10.6 μm CO2激光加热硅芯光纤预制棒的温场分布, 在考虑预制棒表面热辐射和空气对流的情况下, 用有限元软件COMSOL Multiphysics建立了激光加热预制棒的传热物理模型, 比较了激光功率、激光光斑半径和预制棒直径对温场分布的影响, 同时提出CO2激光加热与石墨炉加热结合调节温场分布的方法。仿真结果显示, 激光参数和预制棒直径都会明显影响预制棒温场分布, 且激光光斑半径3 mm, 功率达到400 W的激光器可用于直径10 mm内的硅芯光纤预制棒制备硅芯光纤。通过CO2激光加热和石墨炉加热相结合的加热方式, 能更加灵活有效地调节预制棒的温场分布, 构建适合硅芯光纤拉丝的温场条件。

Abstract

This paper presents a physical model about the temperature distribution of a silicon preform exposed to a 10.6 μm CO2 laser in consideration of air convection and environmental radiation heat transfer. In the meantime, an approach of heating the preform by the laser combining with graphite furnace is suggested. Simulation results show that the temperature distribution is strongly dependent on the parameters of the CO2 laser and the preform, and laser heating is appropriate for preform with diameter less than 10 mm when the laser spot radius is 3 mm and laser power is 400 W. Heating combining with graphite furnace can modulate the temperature gradient effectively and build the correct temperature field for silicon core fiber drawing.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN241

DOI:10.11884/hplpb201628.151225

所属栏目:高功率激光与光学

基金项目:国家自然科学基金项目(61475096); 国家自然科学基金仪器专项(61227012); 国家自然科学基金青年基金项目(61505103)

收稿日期:2015-11-26

修改稿日期:2016-03-14

网络出版日期:--

作者单位    点击查看

何 婷:上海大学 特种光纤与光接入网省部共建重点实验室培育基地, 上海 200072
赵子文:上海大学 特种光纤与光接入网省部共建重点实验室培育基地, 上海 200072
程雪丽:上海大学 特种光纤与光接入网省部共建重点实验室培育基地, 上海 200072
陈 娜:上海大学 特种光纤与光接入网省部共建重点实验室培育基地, 上海 200072
王廷云:上海大学 特种光纤与光接入网省部共建重点实验室培育基地, 上海 200072

联系人作者:何婷(15201920322@163.com)

备注:何 婷(1990—), 女,硕士研究生, 主要从事半导体纤芯光纤的研究。

【1】Ballato J, Hawkins T, Foy P, et al. Glass-clad single-crystal germanium optical fiber[J]. Optics Express, 2009, 17(10): 8029-8035.

【2】Baril N F, Rongrui H, Day T D, et al. Confined high-pressure chemical deposition of hydrogenated amorphous silicon[J]. Journal of the American Chemical Society, 2012, 134(1): 19-22.

【3】Ballato J, Hawkins T, Foy P, et al. Advancements in semiconductor core optical fiber[J]. Optical Fiber Technology, 2010, 16(6): 399-408.

【4】Paek U C. Laser drawing of optical fibers[J]. Applied Optics, 1974, 13(6): 1383-1386.

【5】Peacock A C, Sparks J R, Healy N. Semiconductor optical fibres: progress and opportunities[J]. Laser & Photonics Reviews, 2014, 8(1): 53-72.

【6】Jaeger R E. Laser drawing of glass fiber optical wave guides[J]. American Ceramic Society Bulletin, 1976, 55(3): 270-273.

【7】Ozisik M N. Heat conduction[M]. New York: John Wiley & Sons, 1993: 13-16.

【8】Glass D E, zi瘙塂 ik M N, McRae D S, et al. Hyperbolic heat conduction with temperature-dependent thermal conductivity[J]. Journal of Applied Physics,1986, 59(6): 1861-1865.

【9】Howell J R, Siegel R, Menguc M P. Thermal radiation heat transfer[M]. New York: CRC Press, 2011: 7-15.

【10】Chui G K. Laser cutting of hot glass[J]. American Ceramic Society Bulletin, 1975, 54(5): 514-518.

【11】McLachlan A D, Meyer F P. Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths[J]. Applied Optics,1987, 26(9): 1728-1731.

【12】Yang S T, Matthews M J, Elhadj S, et al. Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica[J]. Applied Optics, 2010, 49(14): 2606-2616.

【13】Watanabe Y, Kawazoe H, Shibuya K, et al. Structure and mechanism of formation of drawing-or radiation-induced defects in SiO2: GeO2 optical fiber[J]. Japanese Journal of Applied Physics, 1986, 25(3): 425-431.

引用该论文

He Ting,Zhao Ziwen,Cheng Xueli,Chen Na,Wang Tingyun. Temperature distribution of preform in drawing silicon core optical fiber with CO2 laser heating[J]. High Power Laser and Particle Beams, 2016, 28(9): 091003

何 婷,赵子文,程雪丽,陈 娜,王廷云. CO2激光加热硅芯光纤预制棒的温场分布[J]. 强激光与粒子束, 2016, 28(9): 091003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF