首页 > 论文 > 红外与毫米波学报 > 39卷 > 4期(pp:513-522)

基于横纵多尺度灰度差异加权双边滤波的弱小目标检测

Dim small targets detection based on horizontal-vertical multi-scale grayscale difference weighted bilateral filtering

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了有效地检测复杂背景下的红外弱小目标,提出了一种基于横纵多尺度灰度差(HV-MSGD)的方法来增强弱目标,并通过距离和像素差异来实现对背景强边的抑制。目标区域与周围区域之间存在不连续性,为了加强它们的差异,HV-MSGD与双边滤波(BF)相结合,可以在抑制背景的同时提高目标强度。进一步通过自适应局部阈值分割和全局阈值分割来提取候选目标。为了进一步验证对单帧检测的影响,将上述单帧检测算法与改进的无迹卡尔曼粒子滤波器(UPF)相结合,实现轨迹检测。实验结果表明,该方法在弱信噪比(SNR)下优于其他方法,在抑制背景的同时可以增强目标,增强效果是其他方法的6-30倍。在实验中,输入信噪比分别为2.78,1.77,1.79,1.13和1.16。图像处理后,背景抑制因子(BSFs)分别为13.48,21.33,11.73,20.63和121.92,信噪比增益(GSNRs)分别为40.09,71.37,27.53,12.65和131。该方法的检测概率(Pd)也优于其他算法。当误报率(FARs)为5×10-4, 1×10-3, 1×10-3, 1×10-57×10-6,计算五组真实序列图像的Pd为94.4%,92.2%,91.3%,95.6%和96.7%。

Abstract

In order to effectively detect weak and small infrared targets under complex background, a single-frame method based on horizontal-vertical multi-scale grayscale difference (HV-MSGD) is proposed to enhance weak targets, and the strong edges of background are suppressed by the difference between the distance and grayscale values. There is discontinuity between the target area and the surrounding area. To strengthen their differences, HV-MSGD combined with bilateral filtering (BF) can increase the intensity of the target while suppressing the background. Candidate targets are further extracted by adaptive local threshold segmentation and global threshold segmentation. In order to further verify the impact on single-frame detection, the above-mentioned single-frame detection algorithm is combined with an improved untraced Kalman particle filter (UPF) to implement trajectory detection. The experimental results show that this method is better than other methods under weak signal-to-noise ratio (SNR). It can enhance the target while suppressing the background, and the enhancement effect is 6-30 times that of other methods. In the experiments, the input signal-to-noise ratios were 2.78, 1.77, 1.79, 1.13, and 1.16, respectively. After image processing, the background suppression factors (BSFs) are 13.48, 21.33, 11.73, 20.63, and 121.92, and the signal-to-noise ratio gains (GSNRs) are 40.09, 71.37, 27.53, 12.65, and 131, respectively. The probability of detection (Pd) of this method is also superior to other algorithms. When the false alarm rates (FARs) are 5×10-4, 1×10-3, 1×10-3, 1×10-5, and 7×10-6, the Pd values of the five sets using real sequence images are calculated to be 94.4%, 92.2%, 91.3%, 95.6% and 96.7% respectively.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.11972/j.issn.1001-9014.2020.04.016

所属栏目:Image Processing and Software Simulation

基金项目:the Optical Technology and Instruments Foundation of China;

收稿日期:2019-08-22

修改稿日期:--

网络出版日期:2020-09-17

作者单位    点击查看

朱含露:Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China;University of Chinese Academy of Sciences, Beijing100049, China
张旭中:Huzhou Center for Applied Technology Research and Industrialization, Chinese Academy of Sciences, Huzhou1000, China
陈忻:Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
胡亭亮:Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
饶鹏:Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China

联系人作者:饶鹏(peng_rao@sitp.mail.com.cn)

备注:the Optical Technology and Instruments Foundation of China;

【1】C Q Gao, D Y Meng and Y Yang. Infrared patch-image model for small target detection in a single image. IEEE Transactions on Image Processing. 22(12), 4996-5009(2013).

【2】K P LuoK P Luo. Space-based infrared sensor scheduling with high uncertainly: Issues and challenges. Syst. Eng. 18(1), 102-113(2015).

【3】F Gao, H Li and T Li. Infrared small target detection in compressive domain. Electron. Lett. 50(7), 510-512(2014).

【4】C Q Gao, T Q Zhang and Q Li. Small infrared target detection using sparse ring representation. IEEE Aerospace and Electronic Systems Magazine. 27(3), 21-30(2012).

【5】X Yang, Y P Zhou and D K Zhou. A new infrared small and dim target detection algorithm based on multi-directional composite window. Infrared Phys. Technol. 71, 402-407(2015).

【6】X P Shao, H Fan and G X Lu. An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system. Infrared Phys. Technol. 55(5), 403-408(2012).

【7】P Wang, J W Tian and C Q Gao. Infrared small target detection using directional high pass filters based on LS-SVM. Electron. Lett. 45(3), 156-158(2009).

【8】Tian-Ai WU, Shu-Cai HUANG, Zhi-Wei YUANNSCT combined with SVD for infrared dim target complex background suppression. 红外技术). 38(9), 758-764(2016).

【9】Huai-Ye WANG, Ke ZHANG, Yan-Jun LIAnisotropic gaussian filtering for infrared image. 李言俊.各向异性滤波在红外图像处理中的应用.红外与毫米波学报). 24(2), 109-113(2005).

【10】Y Li, Y Song and Y F Zhao. An infrared target detection algorithm based on lateral inhibition and singular value decomposition. Infrared Physics & Technology. 85, 238-245(2017).

【11】Z M Chen, M C Tian and Y M Bo. Improved infrared small target detection and tracking method based on new intelligence particle filter. Computational Intelligence. 34(3), 917-938(2018).

【12】F Zhao, H Z Lu and Z Y Zhang. Complex background suppression based on fusion of morphological Open filter and nucleus similar pixels bilateral filter. Infrared Physics & Technology. 55(6), 454-461(2012).

【13】. Spatial and temporal bilateral filter for infrared small target enhancement. Infrared Physics & Technology. 63(2), 42-53(2014).

【14】H B Tian, E E Department and H V Amp. Infrared small target detection based on bilateral filter and bhattacharyya distance. Nuclear Electronics & Detection Technology. 34(10), 1159-1163(2014).

【15】H Deng, Y T Wei and M W Tong. Background suppression of small target image based on fast local reverse entropy operator. IET Computer Vision. 7(5), 405-413(2013).

【16】H Deng, J G Liu and Z Chen. Infrared small target detection based on modified local entropy and EMD. Chinese Optical Letters. 8(1), 24-28(2010).

【17】C J Li, Y Wei and Z L Shi. A small target detection algorithm based on multi-scale energy cross. IEEE Int. Conf. Robotics Intell. Syst. Signal Process. 2, 1191-1196(2003).

【18】X Z Bai and Y G Bi. PP(. IEEE Transactions on Geoscience & Remote Sensing. 1-15(2018).

【19】K Shang, X Sun and J W Tian. Infrared small target detection via line-based reconstruction and entropy-induced suppression. Infrared Physics & Technology. 76, 75-81(2016).

【20】Z Chen, S Luo and T Xie. A novel infrared small target detection method based on BEMD and local inverse entropy. Infrared Physics & Technology. 66(9), 114-124(2014).

【21】Y Mao, M Zheng and W Jia. Analysis of small target detection algorithm based on image gray entropy. (2016).

【22】G H Peng, H Chen and Q Wu. Infrared small target detection under complex background. Advanced Materials Research. 346, 615-619(2011).

【23】X J Qu, H Chen and G H Peng. Novel detection method for infrared small targets using weighted information entropy. Journal of Systems Engineering and Electronics. 23(6), 838-842(2012).

【24】C L Philip, H Li and Y T Wei. A local contrast method for small infrared target detection. IEEE Trans. on Geoscience & Remote Sensing. 52(1), 574-581(2013).

【25】H Deng, X P Sun and M L Liu. Entropy-based window selection for detecting dim and small infrared targets. Pattern Recognition. 61, 66-77(2017).

【26】H Deng, X P Sun and M L Liu. Infrared small-target detection using multiscale gray difference weighted image entropy. IEEE Transactions on Aerospace & Electronic Systems. 52(1), 60-72(2016).

【27】G Y WangG Y Wang. Efficient method for multiscale small target detection from a natural scene. Opt. Eng. 35(3), 761-768(1996).

【28】X P Huang and Y Wang. Kalman filter principle and application: MATLAB simulation. Publishing House of Electronics Industry. (2015).

引用该论文

Han-Lu ZHU,Xu-Zhong ZHANG,Xin CHEN,Ting-Liang HU,Peng RAO. Dim small targets detection based on horizontal-vertical multi-scale grayscale difference weighted bilateral filtering[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 513-522

朱含露,张旭中,陈忻,胡亭亮,饶鹏. 基于横纵多尺度灰度差异加权双边滤波的弱小目标检测[J]. 红外与毫米波学报, 2020, 39(4): 513-522

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF