首页 > 论文 > 激光与光电子学进展 > 53卷 > 10期(pp:100501--1)

基于正则化主量分析的相移阴影叠栅解调技术

Phase Shift Shadow Moiré Demodulation Based on Normalized Principal Component Analysis

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

传统的相移阴影叠栅轮廓术在垂直于光栅面方向移动光栅实现相移,由于相移是非线性的,需要较多帧的条纹图进行相位解调。为了减少条纹图帧数,节约测量时间,并简化测量过程,提出一种基于主量分析法的三帧随机相移阴影叠栅技术。主量分析法通过时域平均去除背景,对较少帧的条纹图直接使用主量分析法会产生直流分量去除误差,因而先将条纹图正则化,再应用主量分析法求取相位。实验表明,相对于直接使用主量分析法,利用正则化主量分析法可以明显减小测量误差。分别使用正则化主量分析法和五步相移法对同一物体表面进行测量,两次测量结果之差在±5 μm内,说明了正则化主量分析法的有效性。

Abstract

Conventional phase shifting shadow moiré profilometry usually needs more phase shifting images to demodulate the measurement phase because of the nonlinear phase shifting. The data sampling process is time-consuming and the measurement method is complex. We proposed a random three-frame object surface measurement method based on the principal component analysis and the shadow moiré profilometry. The phase shift is introduced by translating grating perpendicular to its own plane. Given that the background of captured fringe patterns is a smooth signal, we firstly normalized the sampled fringe patterns. Then principal component analysis based phase shifting algorithm is used to estimate the phase. The proposed method is fast and can be implemented easily in many applications. We also did optical experiments to demonstrate the effectiveness of the proposed method by referring to the result of conventional five-step phase shifting shadow moiré. The results show that the difference of the measurement results is within ±5 μm.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/lop53.100501

所属栏目:衍射与光栅

基金项目:国家自然科学基金(61471288,51475351)、陕西省自然科学基础研究计划(2015JM5190)

收稿日期:2016-05-19

修改稿日期:2016-06-24

网络出版日期:2016-09-24

作者单位    点击查看

杜虎兵:西安工业大学机电工程学院, 陕西 西安 710021
艾永旭:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049

联系人作者:杜虎兵(xhdhub@126.com)

备注:杜虎兵(1976—),男,博士,副教授,主要从事光电检测、实时在线测试以及机器视觉方面的研究。

【1】D′Acquisto L, Fratini L, Siddiolo A M. A modified moiré technique for three-dimensional surface topography[J]. Measurement Science and Technology, 2002, 13(4): 613-622.

【2】Servin M, Estrada J C, Quiroga J A . The general theory of phase shifting algorithms[J]. Optics Express, 2009, 17(24): 21867-21881.

【3】Luo Zhiyong, Yang Lifeng, Chen Yunchang. Error evaluation of cosine dependent algoithm in precision interference measurement[J]. Acta Optica Sinica, 2005, 25(12): 1629-1633.
罗志勇, 杨丽峰, 陈允昌. 精密干涉测量中余弦依赖算法的误差研究[J]. 光学学报, 2005, 25(12): 1629-1633.

【4】Guo H W, Chen M Y. Least-squares algorithm for phase-stepping interferometry with an unknown relative step[J]. Applied Optics, 2005, 44(23): 4854-4859.

【5】Wang Z Y, Han B. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms[J]. Optics Letters, 2004, 29(14): 1671-1673.

【6】Xu X F, Cai L Z, Wang Y R, et al. Simple direct extraction of unknown phase shift and wavefront reconstruction in generalized phase-shifting interferometry: Algorithm and experiments[J]. Optics Letters, 2008, 33(8): 776-778.

【7】Gao P, Yao B L, Lindlein N, et al. Phase-shift extraction for generalized phase-shifting interferometry[J]. Optics Letters, 2009, 34(22): 3553-3555.

【8】Vargas J, Quiroga J A, Sorzano C O S, et al. Two-step interferometry by a regularized optical flow algorithm[J]. Optics Letters, 2011, 36(17): 3485-3487.

【9】Zeng F, Tan Q, Gu H, et al. Phase extraction from interferograms with unknown tilt phase shifts based on a regularized optical flow method[J]. Optics Express, 2013, 21(14): 17234-17248.

【10】Deng J, Wang H, Zhang D, et al. Phase shift extraction algorithm based on Euclidean matrix norm[J]. Optics Letters, 2013, 38(9): 1506-1508.

【11】Mavoisin G, Brémard F, Lagarde A. Three-dimensional phase reconstruction by phase-shifting shadow moiré[J]. Applied Optics, 1994, 33(11): 2163-2169.

【12】Dirckx J J J, Decraemer W F, Dielis G. Phase shift method based on object translation for full field automatic 3-D surface reconstruction from moire topograms[J]. Applied Optics, 1988, 27(6): 1164-1169.

【13】Du Hubing, Zhao Hong, Li Bing, et al. Phase shifting shadow moiré by iterative least squares fitting[J]. Acta Photonica Sinica, 2011, 40(7): 978-982.
杜虎兵, 赵宏, 李兵, 等. 相移阴影莫尔基于迭代LSM拟合[J]. 光子学报, 2011, 40(7): 978-982.

【14】Xie X, Atkinson J T, Lalor M J, et al. Three-map absolute moiré contouring[J]. Applied Optics, 1996, 35(35): 6990-6995.

【15】Ladak H M, Decraemer W F, Dirckx J J J, et al. Systematic errors in small deformations measured by use of shadow-moiré topography[J]. Applied Optics, 2000, 39(19): 3266-3275.

【16】Yoshiwaza T, Tomisawa T.Shadow moiré topography by means of the phase-shift method[J]. Optical Engineering, 1993, 32(7): 1668-1674.

【17】Jin, L, Kodera Y, Yoshizawa, T, et al. Shadow moiré profilometry using the phase-shifting method[J]. Optical Engineering, 2000, 39(8): 2119-2123.

【18】Arai Y, Yokozeki S, Yamada T. Fringe-scanning method using a general function for shadow moiré[J]. Applied Optics, 1995, 34(22): 4877-4882.

【19】Degrieck J, van Paepegem W, Boone P. Application of digital phase-shift shadow moiré to micro deformation measurements of curved surfaces[J]. Optics and Lasers in Engineering, 2001, 36(1): 29-40.

【20】Du H, Zhao H, Li B, et al. Algorithm for phase shifting shadow moiré with an unknown relative step[J]. Journal of Optics, 2011, 13(3): 035405.

【21】Vargas J, Quiroga J A, Belenguer T. Phase-shifting interferometry based on principal component analysis[J]. Optics Letters, 2011, 36(8): 1326-1328.

【22】Vargas J, Quiroga J A, Sorzano C O S, et al. Two-step demodulation based on the Gram-Schmidt orthonormalization method[J]. Optics Letters, 2012, 37(3): 443-445.

【23】Li Xinghua, Qian Xiaofan, Lin Chao, et al. Application of phase unwrapping algorithm based on lateral shearing interferometry in three-dimensional measuring by lighting projection[J]. Acta Optica Sinica, 2012, 32(s1): s112005.
李兴华, 钱晓凡, 林超, 等. 横向剪切相位解包裹算法在光学投影三维测量中的应用[J]. 光学学报, 2012, 32(s1): s112005.

【24】Qian Xiaofan, Zhang Yongan, Li Xinyu, et al. Phase unwrapping algorithm based on mask and least-squares iteration[J]. Acta Optica Sinica, 2010, 30(2): 440-444.
钱晓凡, 张永安, 李新宇, 等. 基于掩膜和最小二乘迭代的相位解包裹方法[J]. 光学学报, 2010, 30(2): 440-444.

【25】Ai Yongxu, Zhou Xiang, Du Hubing, et al. Shadow moiré using Talbot effect under point light illumination[J]. Acta Optica Sinica, 2016, 36(4): 0412003.
艾永旭, 周翔, 杜虎兵, 等. 点光源下的Talbot效应在阴影叠栅中的应用[J]. 光学学报, 2016, 36(4): 0412003.

【26】Harlharan P, Oreb B F, Eiju T, et al. Digital phase-shifting interferometry: A simple error-compensating phase calculation algorithm[J]. Applied Optics, 1987, 26(13): 2504-2506.

引用该论文

Du Hubing,Ai Yongxu. Phase Shift Shadow Moiré Demodulation Based on Normalized Principal Component Analysis[J]. Laser & Optoelectronics Progress, 2016, 53(10): 100501

杜虎兵,艾永旭. 基于正则化主量分析的相移阴影叠栅解调技术[J]. 激光与光电子学进展, 2016, 53(10): 100501

被引情况

【1】颜菁菁,杜虎兵. 相移阴影叠栅实时标定技术. 激光与光电子学进展, 2017, 54(9): 91202--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF