Frontiers of Optoelectronics, 2016, 9 (2): 312, 网络出版: 2016-10-21   

Single crystal erbium compound nanowires as high gain material for on-chip light source applications

Single crystal erbium compound nanowires as high gain material for on-chip light source applications
作者单位
1 School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
2 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
摘要
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1020 cm–3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonic applications. Er compounds could potentially solve this problem since they contain much higher Er3+ density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor crystal qualities. Recently, we explore a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl) in the form of nanowire, which facilitates the growth of high quality single crystal with relatively large Er3+ density (1.62 × 1022 cm–3). Previous optical results show that the high crystal quality of ECS material leads to a long lifetime up to 1 ms. The Er lifetime-density product was found to be the largest among all the Er containing materials. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement and 30 dB/cm net gain per unit length from a single ECS wire. As a result, such high-gain ECS nanowires can be potentially fabricated into ultra-compact lasers. Even though a single ECS nanowire naturally serves as good waveguide, additional feedback mechanism is needed to form an ultra-compact laser. In this work, we demonstrate the direct fabrication of 1D photonic crystal (PhC) air hole array structure on a single ECS nanowire using focused ion beam (FIB). Transmission measurement shows polarization-dependent stop-band behavior. For transverse electric (TE) polarization, we observed stop-band suppression as much as 12 dB with a 9 μm long airholed structure. Through numerical simulation, we showed that Q-factor as high as 11000 can be achieved at 1.53 μm for a 1D PhC micro-cavity on an ECS nanowire. Such a high Q cavity combined with the high material gain of ECS nanowires provides an attractive solution for ultra-compact lasers, an important goal of this research.
Abstract
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1020 cm–3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonic applications. Er compounds could potentially solve this problem since they contain much higher Er3+ density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor crystal qualities. Recently, we explore a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl) in the form of nanowire, which facilitates the growth of high quality single crystal with relatively large Er3+ density (1.62 × 1022 cm–3). Previous optical results show that the high crystal quality of ECS material leads to a long lifetime up to 1 ms. The Er lifetime-density product was found to be the largest among all the Er containing materials. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement and 30 dB/cm net gain per unit length from a single ECS wire. As a result, such high-gain ECS nanowires can be potentially fabricated into ultra-compact lasers. Even though a single ECS nanowire naturally serves as good waveguide, additional feedback mechanism is needed to form an ultra-compact laser. In this work, we demonstrate the direct fabrication of 1D photonic crystal (PhC) air hole array structure on a single ECS nanowire using focused ion beam (FIB). Transmission measurement shows polarization-dependent stop-band behavior. For transverse electric (TE) polarization, we observed stop-band suppression as much as 12 dB with a 9 μm long airholed structure. Through numerical simulation, we showed that Q-factor as high as 11000 can be achieved at 1.53 μm for a 1D PhC micro-cavity on an ECS nanowire. Such a high Q cavity combined with the high material gain of ECS nanowires provides an attractive solution for ultra-compact lasers, an important goal of this research.

Zhicheng LIU, Hao SUN, Leijun YIN, Yongzhuo LI, Jianxing ZHANG, Cun-Zheng NING. Single crystal erbium compound nanowires as high gain material for on-chip light source applications[J]. Frontiers of Optoelectronics, 2016, 9(2): 312. Zhicheng LIU, Hao SUN, Leijun YIN, Yongzhuo LI, Jianxing ZHANG, Cun-Zheng NING. Single crystal erbium compound nanowires as high gain material for on-chip light source applications[J]. Frontiers of Optoelectronics, 2016, 9(2): 312.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!