首页 > 论文 > 量子电子学报 > 33卷 > 4期(pp:469-475)

3-puzzle量子计算的酉变换矩阵及逻辑线路

Unitary transformation matrix and logic circuits of 3-puzzle quantum computing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对3-puzzle问题,运用量子计算方法分析了节点扩展的酉变换矩阵。对一个3-puzzle问题 实例进行了元素编码和节点状态编码,描述了具体的节点扩展酉变换矩阵,并运用量子受控非门 逻辑线路实现了酉变换矩阵。讨论了N-puzzle量子计算的线路模型,对量子位的基态和最佳基态的 制备作了分析,阐述了N-puzzle启发式搜索量子计算框架。

Abstract

The unitary transformation matrices of nodes expansion are analyzed by using quantum computing method for 3-puzzle problem. Element coding and node state coding are performed on a 3-puzzle problem instance. The specific node expansion unitary transformation matrices are described, and the unitary transformation matrices are realized by using the quantum controlled-NOT gate logic circuits. A logic circuit model of N-puzzle quantum computing is discussed. The preparation of ground state and optimum ground state of quabits is analyzed, and the N-puzzle heuristic search quantum computing framework is discussed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O413.1

DOI:10.3969/j.issn.1007-5461. 2016.04.013

所属栏目:量子光学

基金项目:Supported by National Natural Science Foundation of China (国家自然科学基金, 61003311), Natural Science Foundation of Anhui Province (安徽省自然科学基金, 1308085QF113)

收稿日期:2015-04-29

修改稿日期:2015-11-13

网络出版日期:--

作者单位    点击查看

许精明:安徽工业大学计算机科学与技术学院, 安徽 马鞍山 243002
阮越:安徽工业大学计算机科学与技术学院, 安徽 马鞍山 243002

联系人作者:许精明(xujingming518@126.com)

备注:许精明 (1963-), 副教授,研究领域为量子计算和人工智能。

【1】Kevin Igwe, Nelishia Pillay, Christopher Rae. Solving the 8-puzzle problem using genetic programming[C]. Proceedings of the South African Institute for Computer Scientists and Information Technologists, London, South Africa, 2013.

【2】Alexander Reinefeld. Complete solution of the eight-puzzle and the benefit of node ordering in IDA[OL]. http://www.laborion.com/Portals/0/Ai/Heuristicssearch/93ijcai.pdf, 1993.

【3】Daniel Ratner, Manfred Warmuth. The (n2-1) puzzle and related relocation problems[J]. Symbolic Computation, 1990, 10(2): 111-137.

【4】Emilio G, Ortiz-Garcia, Sancho Salcedo-Sanz, et al. Automated generation and visualization of picture-logic puzzles[J]. Computers and Graphics, 2007, 31(5): 750-760.

【5】Zilles S, Holte R C. The computational complexity of avoiding spurious states in state space abstraction[J]. Artificial Intelligence, 2010, 174(14): 1072-1092.

【6】Yang Shuyuan, Liu Fang, Jiao Licheng. Quantum evolutionary strategies[J]. Acta Electronica Sinica (电子学报), 2001, 29(12A): 1873-1877 (in Chinese).

【7】Aoki K, Yamanashi Y, Yoshikawa N. Multiplexing techniques of single flux quantum circuit based readout circuit for a multi-channel sensing system[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 799-802.

【8】Nielsen M A, Chuang I L. Quantum Computing and Quantum Information (量子计算和量子信息)[M]. Trans. by Zhao Qianchuan. Beijing: Tsinghua University Press, 2004 (in Chinese).

引用该论文

XU Jingming,RUAN Yue. Unitary transformation matrix and logic circuits of 3-puzzle quantum computing[J]. Chinese Journal of Quantum Electronics, 2016, 33(4): 469-475

许精明,阮越. 3-puzzle量子计算的酉变换矩阵及逻辑线路[J]. 量子电子学报, 2016, 33(4): 469-475

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF