首页 > 论文 > 量子电子学报 > 33卷 > 4期(pp:491-498)

几种金属结构材料的激光冲击损伤形貌特性研究

Morphology characteristics of several metallic structural materials under laser shock

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光冲击是一种以高功率脉冲激光辐照金属材料的新型表面改性处理技术。在水约束层和 记号笔涂层作保护层的情况下,对铝、钛和不锈钢3种典型的金属结构材料进行激光冲击对比实验, 获得强激光冲击作用下3种金属结构材料的损伤特性,并定量分析了激光冲击次数与金属材料表面凹坑 深度的关系。结果表明:凹坑深度与冲击次数呈线性关系,且斜率与金属材料的屈服强度成反比。 为探究激光冲击光斑形貌对金属材料损伤的影响,对比了方斑和圆斑的冲击情况。测试数据显示试件 表面损伤形貌与光斑一致且圆斑造成的损伤更严重。

Abstract

Laser shock is a new surface modification technology for metal material by irradiating them with high power pulsed laser. The laser shock contrast experiments are carried out on three typical metallic structural materials, aluminum, titanium and stainless steel with water bound layer and mark pen coating as protective layer. The damage characteristics of the three metallic structural materials are obtained under high laser shock, and the relationship between the number of laser shock and pit depth on the metal samples is analyzed quantitatively. Results show that the dent depth and impact times show a linear relationship, and the slope is inversely proportional to the yield strength of metal materials. To explore the effect of laser shock spot morphology on metallic material damage, the impact situation of square and circular spots are compared. Test data show that the surface damage morphology of the specimen is consistent with the spot, and damage caused by the circular spot is more serious.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN249

DOI:10.3969/j.issn.1007-5461. 2016.04.016

所属栏目:激光应用

基金项目:Supported by Key Laboratory Open Fundation(重 点实验室开放基金, SKL 2013 KF 02)

收稿日期:2015-05-11

修改稿日期:2015-07-24

网络出版日期:--

作者单位    点击查看

丁立:中国科学技术大学光学与光学工程系, 安徽 合肥 230026
康学亮:中国科学技术大学光学与光学工程系, 安徽 合肥 230026
王声波:中国科学技术大学光学与光学工程系, 安徽 合肥 230026
李化:脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
豆贤安:脉冲功率激光技术国家重点实验室, 安徽 合肥 230037

联系人作者:丁立(tsdingli@mail.ustc.edu.cn)

备注:丁立 (1989-), 博士生,主要从事衍射光学,微纳结构和强激光冲击技术方面的研究。

【1】Wang Lili. Progress of Impact Dynamics (冲击动力学进展)[M]. Hefei: University of Science and Technology of China Press, 1992: 277-299 (in Chinese).

【2】Cottet F, Romain J P. Formation and decay of laser-genera ted shock waves[J]. Phys. Rev. A, 1982, 25(1): 576-579.

【3】Yuan Gang, Zhou Guangquan, Tang Zhiping, et al. Propagation and decay of short duration pulsed shock waves with high pressure[J]. Explosion and Shock Waves (爆炸与冲击), 1992, 12(4): 307-312 (in Chinese).

【4】Romain J P, Bauer F, Zagouri D, et al. Measurements of laser induced shock pressures using PVDF gauges[J]. American Institute of Physics, 1994, 309(10): 1915-1918.

【5】Wang Xuede, Nie Xiangfan, Zang Shunlai, et al. Formation mechanism of “residual stress hole” induced by laser shock penning[J]. High Power Laser and Particle Beams (强激光与粒子束), 2014, 2(11): 9031-9035 (in Chinese).

【6】Wang Cheng, Xue Yanqing, Chai Yan, et al. Laser shock processing for improving fatigue property of K403 cast superalloy[J]. High Power Laser and Particle Beams(强激光与粒子束), 2014, 2(10): 9001-9004 (in Chinese).

【7】Feng Aixin, Lin Bin, Guo Rucheng, et al. Analysis of residual stress state of spring steel wire induced by laser shock processing[J]. High Power Laser and Particle Beams (强激光与粒子束), 2013, 25(7): 1635-1638 (in Chinese).

【8】Zhao Jiamin, You Libing, Yu Yinshan, et al. Application and key technology of high energy and high power excimer laser[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(6): 696-702 (in Chinese).

【9】Zhao Haipei. Investigation of adaptive filtering algorithm for laser absorption spectroscopy[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(2): 231-235 (in Chinese).

【10】Fabbro R, et al. Physical study of laser-produced plasma in confined geometry[J]. J. App. Phys., 1990, 68(2): 775-784.

【11】Li Yinghong. Theory and Technology of Laser Shock Processing (激光冲击强化理论与技术)[M]. Beijing : Science Press, 2013: 71-90 (in Chinese).

【12】Puig T, Decamps B, Bourda C, et al. Deformation of a V/V′ WASPALOY after laser shock[C]. Proc. of SPIE, 1992, 1502: 183-191.

【13】Zhang Y K, Hu C L,et al. Mechanism of improvement on fatigue lift of metal by laser-excited shock waves[J]. App. Phys., 2001, 72(8): 113-116.

【14】Zhang Y K, LU J Z, Ren X D, et al. Effect of shock processing on the mechanical properties and fatigue lives of the turbojet engine manufactured by LY2 aluminum alloy[J]. Mater. Des., 2009, 30(12): 1697-1681.

【15】Zhang Y K, You J, Lu J Z, et al. Effect of laser shock processing on stress corroding cracking susceptibility of AZ31B magnesium alloy[J]. Surf. Coat. Tech., 2010, 204(2): 3947-3951.

【16】Yu Shengshui, Yao Hongbing, Wang Fei, et al. Influence of interaction parameters on high power laser induced shockwave in magnesium alloy[J]. Chinese Journal of Lasers (中国激光), 2010, 37(5): 1386-1390 (in Chinese).

【17】Yu Yongning. Foundation of Material Science (材料科学基础)[M]. Beijing: High Education Press, 200(in Chinese).

【18】Ding Li, Huang Kun, Kang Xueliang, et al. Modulate mixed-wavelength lights to realize focusing, shaping, and spectrum function by cascaded diffractive optical elements[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 30(1): 25-32 (in Chinese).

引用该论文

DING Li,KANG Xueliang,WANG Shengbo,LI Hua,DOU Xian′an. Morphology characteristics of several metallic structural materials under laser shock[J]. Chinese Journal of Quantum Electronics, 2016, 33(4): 491-498

丁立,康学亮,王声波,李化,豆贤安. 几种金属结构材料的激光冲击损伤形貌特性研究[J]. 量子电子学报, 2016, 33(4): 491-498

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF