High Power Laser Science and Engineering, 2016, 4 (3): 03000e31, Published Online: Nov. 7, 2016  

Review of fiber superluminescent pulse amplifications Download: 736次

Author Affiliations
Center for Photonics and Electronics, State Key Laboratory of Precision Measurement and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, PR China
Abstract
High coherence of the laser is indispensable light sources in modern long or short-distance imaging systems, because the high coherence leads to coherent artifacts such as speckle that corrupt image formation. To deliver low coherence pulses in fiber amplifiers, we utilize the superluminescent pulsed light with broad bandwidth, nonlongitudinal mode structure and chaotic mode phase as the seed source of the cascaded fiber amplifiers. The influence of fiber superluminescent pulseamplification (SPA) on the limitations of the performance is analyzed. A review of our research results for SPA in the fibers are present, including the nonlinear theories of this low coherent light sources, i.e., self-focusing (SF), stimulated Raman scattering (SRS) and self-phase modulation (SPM) effects, and the experiment results of the nanosecond pulses with peak power as high as 4.8 MW and pulse energy as much as 55 mJ. To improve the brightness of SPA light in the future work, we introduce our novel evaluation term and a more reasonable criterion, which is denoted by a new parameter of brightness factor for active large mode area fiber designs. A core-doped active large pitch fiber with a core diameter of 190 mm and a mode-field diameter of 180 mm is designed by this method. The designed fiber allows neardiffracted limited beam quality operation, and it can achieve 100 mJ pulse energy and 540 Waverage power by analyzing the mode coupling effects induced by heat.

Haitao Zhang, Xinglai Shen, He Hao, Qinghua Li, Mali Gong. Review of fiber superluminescent pulse amplifications[J]. High Power Laser Science and Engineering, 2016, 4(3): 03000e31.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!