首页 > 论文 > 红外与激光工程 > 45卷 > 10期(pp:1028002--1)

水质浊度红外光检测及聚类灰色融合预测模型

Infrared detection and clustering grey fusion prediction model of water quality turbidity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了对水处理过程中水质浊度进行实时、准确检测, 设计了基于红外光的散射浊度检测系统, 并提出一种聚类灰色融合的预测模型对水质浊度的变化趋势进行有效预测。利用890 nm波长的红外发光二极管作为发光器件, 光敏二极管作为接收器, 检测装置响应时间短, 零点误差小。采用灰色预测算法和聚类融合的方法对传感器所采集的数据进行处理, 将聚类融合处理后的数据作为灰色预测控制的输入数据, 灰色预测控制的输出数据与融合数据进行对比分析, 确定预测浊度值。通过实际项目进行了数据跟踪和运算, 聚类灰色融合算法的浊度预测输出值和实测值的平均误差值为0.008 7 NTU, 聚类灰色融合算法预测性能优于单一的灰色预测算法, 能够保证水质浊度参数的平稳, 满足了水质的要求。

Abstract

In order to realize real-time and accurate detection of water turbidity in the water treatment process, the turbidity detection system was designed based on infrared light scattering and the turbidity forecasting model was put forward based on clustering grey fusion. The infrared light emitting diode with 890 nm wavelength was used as the light emitting device, the photosensitive diode was used as the receiver, and the response time of the detector was short, and the zero error was small. The data collected by the sensor was processed by the method of grey prediction algorithm and cluster fusion. The data processed by the cluster fusion were as the input data of the grey predictive control, and the output data of the grey predictive control and the fusion data were compared and analyzed. Data tracking and operation were carried out through the actual project. The average error of the measured value and the output value of the turbidity prediction is 0.008 7 NTU. Grey fusion algorithm is superior to the single grey prediction algorithm, to ensure that the water quality turbidity parameters are stable and meet the requirements of water quality, and ensures that the water quality turbidity parameters are more stable and meet the requirements of water quality.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN219

DOI:10.3788/irla201645.1028002

所属栏目:景象信息处理

基金项目:国家自然科学基金(51205288); 天津市高校“中青年骨干创新人才培养计划”项目;天津市科委面上基金(13jcybjc15900); 天津市技术创新引导专项(15JCTPJC61200)

收稿日期:2016-02-14

修改稿日期:2016-03-15

网络出版日期:--

作者单位    点击查看

杜玉红:天津工业大学 机械工程学院, 天津 300387天津市现代机电装备技术重点实验室, 天津 300387
魏坤鹏:天津工业大学 机械工程学院, 天津 300387天津市现代机电装备技术重点实验室, 天津 300387
史屹君:天津市中环电子计算机公司技术中心, 天津 300190
刘恩华:天津工业大学 机械工程学院, 天津 300387
酆启胤:天津工业大学 机械工程学院, 天津 300387天津市现代机电装备技术重点实验室, 天津 300387
董广宇:天津工业大学 机械工程学院, 天津 300387天津市现代机电装备技术重点实验室, 天津 300387

联系人作者:杜玉红(DYH202@163.com)

备注:杜玉红(1974-), 女, 副教授, 博士, 主要从事图像处理与自动控制系统方面的研究。

【1】Hu Xiaoli, Yu Ming, Mo Bin, et al. Design and realization of an ultra low range turbidity sensor [J]. Transducer and Microsystem Technologies, 2014, 33(8): 116-118. (in Chinese)

【2】Wang Xin. Research and design based on PLC sewage treatment control system and the control of PH value[D]. Taiyuan: Taiyuan University of Technology, 2015. (in Chinese)

【3】Dana D R, Maffione R A. Determining the backward scattering coefficient with fixed-angle backscattering sensors-Revisited[J]. Ocean Optics XVI, Santa Fe, New Mexico, 2002: 18-22.

【4】Song Qimin, Lu Minggang. Research on range and linearity of turbidity measurement with scattered light[J]. Journal of Shanghai University(Natural Science Edition), 1997, 3(5): 564-569. (in Chinese)

【5】Ebie Kunio, Yamaguchi Dabide, Hoshikawa Hiroshi, et al. New measurement principle and basic performance of high-sensitivity turbidimeter with two optical systems in series[J].Water Research, 2006, 40(4): 683-691.

【6】Ran Feng, Yang Hui, Huang Shuping. Design of real-time color video capture system for area array CCD[J]. Optics and Precision Engineering, 2010, 1801: 273-280. (in Chinese)

【7】Wang Qingquan, Li Xuyu, Zhang Maolin. Different turbidity fast detection technology based on CCD[J]. Instrument Technique and Sensor, 2013(1): 97-101. (in Chinese)

【8】Ji Yinglei, Cheng Feng. Research of photoelectric turbidity sensor based on LS-SVR[J]. Transducer and Microsystem Technologies, 2015, 34(1): 73-75. (in Chinese)

【9】Fei Xia, Li Wei, Zhang Shaohua, et al. Design of remote water quality monitoring system based on Infrared Technology[C]//Proceedings of the Fourteenth National Symposium on Infrared Heating and Infrared Medical Development, 2013. (in Chinese)

【10】Wang Jundong, Qi Weigui. Prediction of river water turbidity based on EMD-SVM[J]. Acta Electronica Sinica, 2009, 37(10): 2130-2133. (in Chinese)

【11】Zhao Sihai, Li Wenchang, Li Ming, et al. Study on the method of detecting consistence of emulsion using testing light turbidity[J]. Journal of China Coal Society, 2011, 36(1): 157-160. (in Chinese)

【12】Sun Yuxia. The research of scheme and system for tiny particles concentration detection[D]. Zhejiang: Zhejiang University of Technology, 2015. (in Chinese)

【13】Gao Jianqin, Yang Jiajian, Qian Wenjiao, et al. Optimization control of backwash termination in sand filter[J]. China Water & Wastewater, 2013, 17: 25. (in Chinese)

【14】Xue Pengsong, Feng Minquan, Xing Xiaopeng. Water quality prediction model based on Markovchain improving gray neural network[J]. Engineering Journal of Wuhan University, 2012, (3): 319-324. (in Chinese)

【15】Yan An, Zhihong Zou, Yanfei Zhao. Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM(1,1) model[J]. Journal of Environmental Sciences, 2015(3): 158-164.

【16】Yu Lei, Zhou Lan, Xiong Liang. Study of asphalt pavement rutting based on clustering gray forecasting model[J]. Journal of Hefei University of Technology, 2015, 38(2): 219-221. (in Chinese)

【17】Duan Zhaolei, Gu Zhimin. Grey prediction based hot spot relief strategy in Web Cache cluster[J]. Transactions of Beijing Institute of Technology, 2010, 30(7): 794-797. (in Chinese)

【18】Zhao Mingfu, Wang Nian, Luo Binbin, et al. Simultaneous measurement of temperature and concentration of sugar solution based on hybrid fiber grating sensor[J]. Chinese Optics, 2014(3): 476-482. (in Chinese)

【19】Liu Ruipeng, Liu Qiao, Qi Zhimei. Interference-resistant turbidity detector based on measurement of scattered light power ratio[J]. Optics and Precision Engineering, 2011, 1906: 1221-1227. (in Chinese)

【20】Wang Yuqing, Wang Suojian. Quality assessment method of IR and visible fusion image[J]. Chinese Optics, 2014(3): 396-401. (in Chinese)

【21】Li Chenyang, Duan Fajie, Xu Fei, et al. Optical online detection method of oil and suspended matters in sewage[J]. Infrared and Laser Engineering, 2015, 44(11): 3431-3436. (in Chinese)

【22】Zhang Qin, Zheng Lihua, Li Minzan, et al. Portable water turbidimeter based on NIR spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013(S2): 235, 236-240. (in Chinese)

【23】Ma Linli, Sun Yao. Information fusion and its application in controling system fault diagnosis[J]. Infrared and Laser Engineering, 2002, 31(1): 36-40. (in Chinese)

【24】Odeberg H. Fusion sensor information using fuzzy measures[J]. Robotica, 1989, 31: 217-242.

引用该论文

Du Yuhong,Wei Kunpeng,Shi Yijun,Liu Enhua,Feng Qiyin,Dong Guangyu. Infrared detection and clustering grey fusion prediction model of water quality turbidity[J]. Infrared and Laser Engineering, 2016, 45(10): 1028002

杜玉红,魏坤鹏,史屹君,刘恩华,酆启胤,董广宇. 水质浊度红外光检测及聚类灰色融合预测模型[J]. 红外与激光工程, 2016, 45(10): 1028002

被引情况

【1】赵海鹏,杜玉红,丁 娟,赵 地,史屹君. 移动机器人中激光雷达测距测角标定方法. 红外与激光工程, 2019, 48(6): 630002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF