首页 > 论文 > 光学 精密工程 > 24卷 > 9期(pp:2167-2172)

被测件随机移相干涉面形测量方法

Surface measurement by randomly phase shifting interferometry of measured element

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对光学元件的面形测量, 提出了一种被测件随机移相干涉面形测量法, 用于降低移相干涉仪的成本, 避免移相器老化产生的移相误差对面形检测精度的影响。该方法利用微位移驱动器驱动被测件在摩擦气浮复合导轨上移动进行随机移相并用相机采集若干幅干涉图; 然后利用最小二乘迭代算法处理干涉图数据进而迭代出被测表面相位分布; 最后进行一系列数据处理求解出被测件的面形结果。为了验证该方法的可行性, 在实验室搭建了改进的斐索移相干涉系统, 并选用一个凹面镜和一个平面镜作为被测件在搭建的系统上进行了实验测试, 同时与同台仪器上的传统移相方法得到的测量结果进行了比对。结果表明: 在激光光源波长λ为632.8 nm的情况下, 凹球面镜面形PV值和RMS值与传统移相方式测量结果相差0.001λ, 和0.002λ; 平面镜面形PV值和RMS值与传统移相方式的测量结果相差0.002λ和0003λ, 面形数据基本一致。该方法避免了移相器老化引入移相误差, 降低了仪器成本, 测量精度高。

Abstract

For the surface measurement of optical elements, a surface measurement method by the randomly phase shifting interferometry of measured element was proposed to reduce the cost of phase shifting interferometer and to avoid phase-shifting error caused by an aged phase shifter. A micro-displacement driver was used to drive a measured element to move on a friction type air-bearing slider to implement the random phase shift, meanwhile, several interfere grams were collected by a camera. Then, the interferograms were processed by least-square iteration algorithm and the phase distribution of the measured element surface was iterated. Finally, the surface measurement result was calculated by a series of data processing and the surfaces of measured elements were obtained. To verify the feasibility of the proposed method, a Fazi phase shift interferometer was improved and a concave spherical mirror and a plane mirror were used as measured elements to perform the comparative experiment between the articles method with the traditional phase shifting method on the same instrument. Experimental results indicate that when the laser wavelength λ is 632.8 nm, the PV difference and the RMS difference between the two results are only 0.001λ and 0.002λ, respectively for the concave spherical mirror. Moreover, those between the two results are only 0.002λ, and 003λ, respectively for the plane mirror. These surface data are basically consistent. Experimental results show that the measurement method avoids the phase-shifting error caused by the aged phase shifter, and it has high accuracy and low cost.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TH741.3

DOI:10.3788/ope.20162409.2167

所属栏目:现代应用光学

基金项目:国家重大科学仪器设备开发专项资助项目(No.61327010); 国家自然科学基金青年基金资助项目(No.51405020)

收稿日期:2016-05-05

修改稿日期:2016-06-14

网络出版日期:--

作者单位    点击查看

赵维谦:北京理工大学 光电学院, 北京100081
李文宇:北京理工大学 光电学院, 北京100081
赵 齐:北京理工大学 光电学院, 北京100081
邱丽荣:北京理工大学 光电学院, 北京100081
王 允:北京理工大学 光电学院, 北京100081

联系人作者:赵维谦(zwq669@126.com)

备注:赵维谦(1966-), 男, 新疆伊宁人, 教授, 博士生导师, 1993年, 2003年于哈尔滨工业大学分别获得硕士、博士学位, 主要从事光学测量领域的研究。E-mail:

【1】BRUNING J H, HERRIOTT D R, GALLAGHER J E, et al.. Digital wavefront measuring interferometer for testing optical surfaces and lenses [J]. Applied Optics, 1974, 13(11): 2693-2703.

【2】朱日宏, 陈磊, 王青, 等. 移相干涉测量术及其应用[J]. 应用光学, 2006, 27(2): 85-88.
ZHU R H, CHEN L, WANG Q, et al.. Phase-shift interferometry and its application[J].Journal of Applied Optics, 2006, 27(2): 85-88. (in Chinese)

【3】黄根旺. 斐索型移相式激光干涉仪研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
HUANG G W. Research on Fizeau Phase-shifting Laser Interferometer[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese)

【4】于瀛洁, 韦春龙, 陈明仪. 移相式数字波面干涉仪中的几个技术问题[J]. 光学 精密工程, 2001, 9(6): 584-587
YU Y J, WEI CH L, CHEN M Y. Technical problems in digital phase-stepping flatness interferometers[J]. Opt. Precision Eng., 2001, 9(6): 584-587. (in Chinese)

【5】任寰, 马力, 刘旭, 等. 多表面干涉情况下光学元件面形检测技术[J]. 光学 精密工程, 2013, 21(5): 1144-1150.
REN H, MA L, LIU X, et al.. Optical element test with multiple surface interference[J]. Opt. Precision Eng., 2013, 21(5): 1144-1150. (in Chinese)

【6】曹华梁, 程祖海, 余亮英. 用干涉条纹图像重建反射镜的三维面形[J]. 光学 精密工程, 2007, 15(4): 599-603.
CAO H L, CHEN Z H, YU L Y.Reconstruction of 3-D surface of mirror by processing fringe pattern[J]. Opt. Precision Eng., 2007, 15(4): 599-603. (in Chinese)

【7】于瀛洁, 张本好, 焦云芳. 波长移相干涉仪的算法研究[J]. 光学 精密工程, 2003, 11(6): 560-566.
YU L J, ZHANG B H, JIAO Y F. Algorithms of the phase-shifting interferometer via wavelength tuning[J]. Opt. Precision Eng., 2003, 11(6): 560-566. (in Chinese)

【8】吴栋, 朱日宏, 陈磊, 等. 抗振型移相干涉仪中PZT移相器的改进[J]. 光学 精密工程, 2003, 11(6): 567-571.
WU D, ZHU R H, CHEN L, et al..Improvement of PZT phase shifter in vibration-resistant phase-shifting interferometer[J]. Opt. Precision Eng., 2003, 11(6): 567-571. (in Chinese)

【9】刘江, 苗二龙, 曲艺, 等. 基于光强自标定移相算法检测光学面形[J]. 光学 精密工程, 2014, 22(8): 2007-2013.
LIU J, MIAO E L, QU Y, et al.. Measurement of optical surface based on intensity self-calibration phase-shift algorithm[J]. Opt. Precision Eng., 2014, 22(8): 2007-2013. (in Chinese)

【10】赵智亮, 夏伯才, 陈立华, 等. 相移干涉测量中相移误差的自修正[J]. 光学 精密工程, 2013, 21(5): 1116-1121.
ZHAO ZH L, XIA B C, CHEN L H, et al.. Self-correction of phase step error in phase shifting interferometry measurement[J]. Opt. Precision Eng., 2013, 21(5): 1116-1121. (in Chinese)

【11】武迎春, 曹益平, 肖焱山. 任意相移最小二乘法迭代的在线三维检测[J]. 光学 精密工程, 2014, 22(5): 1347-1353.
WU Y CH, CAO Y P, XIAO Y SH.On-line three-dimensional inspection using randomly phase-shifting fringe based on least-square iteration [J]. Opt. Precision Eng., 2014, 22(5): 1347-1353. (in Chinese)

【12】苏志德, 史振广, 苏东奇, 等. 在随机和倾斜移相下光强归一化的迭代移相算法[J].光学学报, 2013, 33(1): 0112001-1-7.
SU ZH D, SHI ZH G, SU D Q, et al.. Iterative phase shifting algorithm with normalized intensity in the presence of random and tilt phase shifts [J]. Acta Optica Sinica, 2013, 33(1): 0112001-1-7. (in Chinese)

【13】苏志德, 隋永新, 杨怀江, 等. 迭代最小二乘法用于非线性移相器的标定[J].应用光学, 2013, 33(1): 0112001-1-7.
SU ZH D, SUI Y X, YANG H J, et al.. Calibration of nonlinear phase shifter with iterative least-square method [J]. Journal of Appliced Optics, 2013, 33(1): 0112001-1-7. (in Chinese)

【14】郭媛, 陈小天. 基于最小二乘相位解包裹改进算法的研究[J]. 中国激光, 2014, 41(5): 195-200.
GUO Y, CHEN X T. Study of improved phase unwrapping algorithm based on least squares [J]. China Journal of Lasers, 2014, 41(5): 195-200. (in Chinese)

【15】李国栋, 韦春龙, 于瀛洁, 等. 圆形域干涉图中的相位解包裹[J]. 光学 精密工程, 2000, 8(5): 473-477.
LI G D, WEI CH L, YU Y J, et al.. Phase-unwrapping for interferograms with circle field [J]. Opt. Precision Eng., 2000, 8(5): 473-477. (in Chinese)

【16】单宝忠, 王淑岩, 牛憨笨, 等. Zernike多项式拟合方法及应用[J]. 光学 精密工程, 2002, 10(3): 318-323.
SHAN B ZH, WANG SH Y, NIU H B, et al.. Zernike polynomial fitting method and its application [J]. Opt. Precision Eng., 2002, 10(3): 318-323.(in Chinese)

【17】WANG J Y, SILVA D E. Wave-front interpretation with Zernike polynomials [J]. Applied Optics, 1980, 19(9): 1510-1518.

【18】杨佳苗.激光差动共焦干涉元件参数测量方法与技术研究[D]. 北京: 北京理工大学, 2015.
YANG J M. Laser Differential Confocal and Interference Measurement Method and Technology for Element Parameters [D]. Beijing: Beijing University of Technology, 2015.(in Chinese)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF